\left\{ \begin{array} { l } { 340 - 5 x - y = 0 } \\ { y = 15 x + 200 } \end{array} \right.
Solve for x, y
x=7
y=305
Graph
Share
Copied to clipboard
-5x-y=-340
Consider the first equation. Subtract 340 from both sides. Anything subtracted from zero gives its negation.
y-15x=200
Consider the second equation. Subtract 15x from both sides.
-5x-y=-340,-15x+y=200
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-5x-y=-340
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
-5x=y-340
Add y to both sides of the equation.
x=-\frac{1}{5}\left(y-340\right)
Divide both sides by -5.
x=-\frac{1}{5}y+68
Multiply -\frac{1}{5} times y-340.
-15\left(-\frac{1}{5}y+68\right)+y=200
Substitute -\frac{y}{5}+68 for x in the other equation, -15x+y=200.
3y-1020+y=200
Multiply -15 times -\frac{y}{5}+68.
4y-1020=200
Add 3y to y.
4y=1220
Add 1020 to both sides of the equation.
y=305
Divide both sides by 4.
x=-\frac{1}{5}\times 305+68
Substitute 305 for y in x=-\frac{1}{5}y+68. Because the resulting equation contains only one variable, you can solve for x directly.
x=-61+68
Multiply -\frac{1}{5} times 305.
x=7
Add 68 to -61.
x=7,y=305
The system is now solved.
-5x-y=-340
Consider the first equation. Subtract 340 from both sides. Anything subtracted from zero gives its negation.
y-15x=200
Consider the second equation. Subtract 15x from both sides.
-5x-y=-340,-15x+y=200
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-5&-1\\-15&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-340\\200\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-5&-1\\-15&1\end{matrix}\right))\left(\begin{matrix}-5&-1\\-15&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-1\\-15&1\end{matrix}\right))\left(\begin{matrix}-340\\200\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-5&-1\\-15&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-1\\-15&1\end{matrix}\right))\left(\begin{matrix}-340\\200\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-1\\-15&1\end{matrix}\right))\left(\begin{matrix}-340\\200\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{-5-\left(-\left(-15\right)\right)}&-\frac{-1}{-5-\left(-\left(-15\right)\right)}\\-\frac{-15}{-5-\left(-\left(-15\right)\right)}&-\frac{5}{-5-\left(-\left(-15\right)\right)}\end{matrix}\right)\left(\begin{matrix}-340\\200\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{20}&-\frac{1}{20}\\-\frac{3}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-340\\200\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{20}\left(-340\right)-\frac{1}{20}\times 200\\-\frac{3}{4}\left(-340\right)+\frac{1}{4}\times 200\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\305\end{matrix}\right)
Do the arithmetic.
x=7,y=305
Extract the matrix elements x and y.
-5x-y=-340
Consider the first equation. Subtract 340 from both sides. Anything subtracted from zero gives its negation.
y-15x=200
Consider the second equation. Subtract 15x from both sides.
-5x-y=-340,-15x+y=200
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-15\left(-5\right)x-15\left(-1\right)y=-15\left(-340\right),-5\left(-15\right)x-5y=-5\times 200
To make -5x and -15x equal, multiply all terms on each side of the first equation by -15 and all terms on each side of the second by -5.
75x+15y=5100,75x-5y=-1000
Simplify.
75x-75x+15y+5y=5100+1000
Subtract 75x-5y=-1000 from 75x+15y=5100 by subtracting like terms on each side of the equal sign.
15y+5y=5100+1000
Add 75x to -75x. Terms 75x and -75x cancel out, leaving an equation with only one variable that can be solved.
20y=5100+1000
Add 15y to 5y.
20y=6100
Add 5100 to 1000.
y=305
Divide both sides by 20.
-15x+305=200
Substitute 305 for y in -15x+y=200. Because the resulting equation contains only one variable, you can solve for x directly.
-15x=-105
Subtract 305 from both sides of the equation.
x=7
Divide both sides by -15.
x=7,y=305
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}