Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

x=\frac{16}{31}y+\frac{7}{31}z+\frac{80}{31}
Solve 31x-16y-7z=80 for x.
-16\left(\frac{16}{31}y+\frac{7}{31}z+\frac{80}{31}\right)+27y-4z=0 -7\left(\frac{16}{31}y+\frac{7}{31}z+\frac{80}{31}\right)-4y+31z+24y=0
Substitute \frac{16}{31}y+\frac{7}{31}z+\frac{80}{31} for x in the second and third equation.
y=\frac{1280}{581}+\frac{236}{581}z z=\frac{35}{57}-\frac{127}{228}y
Solve these equations for y and z respectively.
z=\frac{35}{57}-\frac{127}{228}\left(\frac{1280}{581}+\frac{236}{581}z\right)
Substitute \frac{1280}{581}+\frac{236}{581}z for y in the equation z=\frac{35}{57}-\frac{127}{228}y.
z=-\frac{1}{2}
Solve z=\frac{35}{57}-\frac{127}{228}\left(\frac{1280}{581}+\frac{236}{581}z\right) for z.
y=\frac{1280}{581}+\frac{236}{581}\left(-\frac{1}{2}\right)
Substitute -\frac{1}{2} for z in the equation y=\frac{1280}{581}+\frac{236}{581}z.
y=2
Calculate y from y=\frac{1280}{581}+\frac{236}{581}\left(-\frac{1}{2}\right).
x=\frac{16}{31}\times 2+\frac{7}{31}\left(-\frac{1}{2}\right)+\frac{80}{31}
Substitute 2 for y and -\frac{1}{2} for z in the equation x=\frac{16}{31}y+\frac{7}{31}z+\frac{80}{31}.
x=\frac{7}{2}
Calculate x from x=\frac{16}{31}\times 2+\frac{7}{31}\left(-\frac{1}{2}\right)+\frac{80}{31}.
x=\frac{7}{2} y=2 z=-\frac{1}{2}
The system is now solved.