\left\{ \begin{array} { l } { 31 x - 10 z = - 15 } \\ { 15 y - 6 z = 85 } \\ { 6 y = 63 } \end{array} \right.
Solve for x, z, y
x = \frac{635}{186} = 3\frac{77}{186} \approx 3.413978495
y = \frac{21}{2} = 10\frac{1}{2} = 10.5
z = \frac{145}{12} = 12\frac{1}{12} \approx 12.083333333
Share
Copied to clipboard
y=\frac{63}{6}
Consider the third equation. Divide both sides by 6.
y=\frac{21}{2}
Reduce the fraction \frac{63}{6} to lowest terms by extracting and canceling out 3.
15\times \frac{21}{2}-6z=85
Consider the second equation. Insert the known values of variables into the equation.
\frac{315}{2}-6z=85
Multiply 15 and \frac{21}{2} to get \frac{315}{2}.
-6z=85-\frac{315}{2}
Subtract \frac{315}{2} from both sides.
-6z=-\frac{145}{2}
Subtract \frac{315}{2} from 85 to get -\frac{145}{2}.
z=\frac{-\frac{145}{2}}{-6}
Divide both sides by -6.
z=\frac{-145}{2\left(-6\right)}
Express \frac{-\frac{145}{2}}{-6} as a single fraction.
z=\frac{-145}{-12}
Multiply 2 and -6 to get -12.
z=\frac{145}{12}
Fraction \frac{-145}{-12} can be simplified to \frac{145}{12} by removing the negative sign from both the numerator and the denominator.
31x-10\times \frac{145}{12}=-15
Consider the first equation. Insert the known values of variables into the equation.
31x-\frac{725}{6}=-15
Multiply -10 and \frac{145}{12} to get -\frac{725}{6}.
31x=-15+\frac{725}{6}
Add \frac{725}{6} to both sides.
31x=\frac{635}{6}
Add -15 and \frac{725}{6} to get \frac{635}{6}.
x=\frac{\frac{635}{6}}{31}
Divide both sides by 31.
x=\frac{635}{6\times 31}
Express \frac{\frac{635}{6}}{31} as a single fraction.
x=\frac{635}{186}
Multiply 6 and 31 to get 186.
x=\frac{635}{186} z=\frac{145}{12} y=\frac{21}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}