\left\{ \begin{array} { l } { 300 = 40 k + b } \\ { 150 = 55 k + b } \end{array} \right.
Solve for k, b
k=-10
b=700
Share
Copied to clipboard
40k+b=300
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
55k+b=150
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
40k+b=300,55k+b=150
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
40k+b=300
Choose one of the equations and solve it for k by isolating k on the left hand side of the equal sign.
40k=-b+300
Subtract b from both sides of the equation.
k=\frac{1}{40}\left(-b+300\right)
Divide both sides by 40.
k=-\frac{1}{40}b+\frac{15}{2}
Multiply \frac{1}{40} times -b+300.
55\left(-\frac{1}{40}b+\frac{15}{2}\right)+b=150
Substitute -\frac{b}{40}+\frac{15}{2} for k in the other equation, 55k+b=150.
-\frac{11}{8}b+\frac{825}{2}+b=150
Multiply 55 times -\frac{b}{40}+\frac{15}{2}.
-\frac{3}{8}b+\frac{825}{2}=150
Add -\frac{11b}{8} to b.
-\frac{3}{8}b=-\frac{525}{2}
Subtract \frac{825}{2} from both sides of the equation.
b=700
Divide both sides of the equation by -\frac{3}{8}, which is the same as multiplying both sides by the reciprocal of the fraction.
k=-\frac{1}{40}\times 700+\frac{15}{2}
Substitute 700 for b in k=-\frac{1}{40}b+\frac{15}{2}. Because the resulting equation contains only one variable, you can solve for k directly.
k=\frac{-35+15}{2}
Multiply -\frac{1}{40} times 700.
k=-10
Add \frac{15}{2} to -\frac{35}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
k=-10,b=700
The system is now solved.
40k+b=300
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
55k+b=150
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
40k+b=300,55k+b=150
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}40&1\\55&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}300\\150\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}40&1\\55&1\end{matrix}\right))\left(\begin{matrix}40&1\\55&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}40&1\\55&1\end{matrix}\right))\left(\begin{matrix}300\\150\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}40&1\\55&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}40&1\\55&1\end{matrix}\right))\left(\begin{matrix}300\\150\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}40&1\\55&1\end{matrix}\right))\left(\begin{matrix}300\\150\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{40-55}&-\frac{1}{40-55}\\-\frac{55}{40-55}&\frac{40}{40-55}\end{matrix}\right)\left(\begin{matrix}300\\150\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{15}&\frac{1}{15}\\\frac{11}{3}&-\frac{8}{3}\end{matrix}\right)\left(\begin{matrix}300\\150\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{15}\times 300+\frac{1}{15}\times 150\\\frac{11}{3}\times 300-\frac{8}{3}\times 150\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-10\\700\end{matrix}\right)
Do the arithmetic.
k=-10,b=700
Extract the matrix elements k and b.
40k+b=300
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
55k+b=150
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
40k+b=300,55k+b=150
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
40k-55k+b-b=300-150
Subtract 55k+b=150 from 40k+b=300 by subtracting like terms on each side of the equal sign.
40k-55k=300-150
Add b to -b. Terms b and -b cancel out, leaving an equation with only one variable that can be solved.
-15k=300-150
Add 40k to -55k.
-15k=150
Add 300 to -150.
k=-10
Divide both sides by -15.
55\left(-10\right)+b=150
Substitute -10 for k in 55k+b=150. Because the resulting equation contains only one variable, you can solve for b directly.
-550+b=150
Multiply 55 times -10.
b=700
Add 550 to both sides of the equation.
k=-10,b=700
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}