\left\{ \begin{array} { l } { 300 = 30 k + b } \\ { 900 = 50 k + b } \end{array} \right.
Solve for k, b
k=30
b=-600
Share
Copied to clipboard
30k+b=300
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
50k+b=900
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
30k+b=300,50k+b=900
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
30k+b=300
Choose one of the equations and solve it for k by isolating k on the left hand side of the equal sign.
30k=-b+300
Subtract b from both sides of the equation.
k=\frac{1}{30}\left(-b+300\right)
Divide both sides by 30.
k=-\frac{1}{30}b+10
Multiply \frac{1}{30} times -b+300.
50\left(-\frac{1}{30}b+10\right)+b=900
Substitute -\frac{b}{30}+10 for k in the other equation, 50k+b=900.
-\frac{5}{3}b+500+b=900
Multiply 50 times -\frac{b}{30}+10.
-\frac{2}{3}b+500=900
Add -\frac{5b}{3} to b.
-\frac{2}{3}b=400
Subtract 500 from both sides of the equation.
b=-600
Divide both sides of the equation by -\frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
k=-\frac{1}{30}\left(-600\right)+10
Substitute -600 for b in k=-\frac{1}{30}b+10. Because the resulting equation contains only one variable, you can solve for k directly.
k=20+10
Multiply -\frac{1}{30} times -600.
k=30
Add 10 to 20.
k=30,b=-600
The system is now solved.
30k+b=300
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
50k+b=900
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
30k+b=300,50k+b=900
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}30&1\\50&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}300\\900\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}30&1\\50&1\end{matrix}\right))\left(\begin{matrix}30&1\\50&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}30&1\\50&1\end{matrix}\right))\left(\begin{matrix}300\\900\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}30&1\\50&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}30&1\\50&1\end{matrix}\right))\left(\begin{matrix}300\\900\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}30&1\\50&1\end{matrix}\right))\left(\begin{matrix}300\\900\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{30-50}&-\frac{1}{30-50}\\-\frac{50}{30-50}&\frac{30}{30-50}\end{matrix}\right)\left(\begin{matrix}300\\900\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{20}&\frac{1}{20}\\\frac{5}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}300\\900\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{20}\times 300+\frac{1}{20}\times 900\\\frac{5}{2}\times 300-\frac{3}{2}\times 900\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}30\\-600\end{matrix}\right)
Do the arithmetic.
k=30,b=-600
Extract the matrix elements k and b.
30k+b=300
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
50k+b=900
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
30k+b=300,50k+b=900
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
30k-50k+b-b=300-900
Subtract 50k+b=900 from 30k+b=300 by subtracting like terms on each side of the equal sign.
30k-50k=300-900
Add b to -b. Terms b and -b cancel out, leaving an equation with only one variable that can be solved.
-20k=300-900
Add 30k to -50k.
-20k=-600
Add 300 to -900.
k=30
Divide both sides by -20.
50\times 30+b=900
Substitute 30 for k in 50k+b=900. Because the resulting equation contains only one variable, you can solve for b directly.
1500+b=900
Multiply 50 times 30.
b=-600
Subtract 1500 from both sides of the equation.
k=30,b=-600
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}