\left\{ \begin{array} { l } { 30 x + 40 y = 1800 } \\ { 40 x + 30 y = 3000 } \end{array} \right.
Solve for x, y
x = \frac{660}{7} = 94\frac{2}{7} \approx 94.285714286
y = -\frac{180}{7} = -25\frac{5}{7} \approx -25.714285714
Graph
Share
Copied to clipboard
30x+40y=1800,40x+30y=3000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
30x+40y=1800
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
30x=-40y+1800
Subtract 40y from both sides of the equation.
x=\frac{1}{30}\left(-40y+1800\right)
Divide both sides by 30.
x=-\frac{4}{3}y+60
Multiply \frac{1}{30} times -40y+1800.
40\left(-\frac{4}{3}y+60\right)+30y=3000
Substitute -\frac{4y}{3}+60 for x in the other equation, 40x+30y=3000.
-\frac{160}{3}y+2400+30y=3000
Multiply 40 times -\frac{4y}{3}+60.
-\frac{70}{3}y+2400=3000
Add -\frac{160y}{3} to 30y.
-\frac{70}{3}y=600
Subtract 2400 from both sides of the equation.
y=-\frac{180}{7}
Divide both sides of the equation by -\frac{70}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{4}{3}\left(-\frac{180}{7}\right)+60
Substitute -\frac{180}{7} for y in x=-\frac{4}{3}y+60. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{240}{7}+60
Multiply -\frac{4}{3} times -\frac{180}{7} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{660}{7}
Add 60 to \frac{240}{7}.
x=\frac{660}{7},y=-\frac{180}{7}
The system is now solved.
30x+40y=1800,40x+30y=3000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}30&40\\40&30\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1800\\3000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}30&40\\40&30\end{matrix}\right))\left(\begin{matrix}30&40\\40&30\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}30&40\\40&30\end{matrix}\right))\left(\begin{matrix}1800\\3000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}30&40\\40&30\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}30&40\\40&30\end{matrix}\right))\left(\begin{matrix}1800\\3000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}30&40\\40&30\end{matrix}\right))\left(\begin{matrix}1800\\3000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{30}{30\times 30-40\times 40}&-\frac{40}{30\times 30-40\times 40}\\-\frac{40}{30\times 30-40\times 40}&\frac{30}{30\times 30-40\times 40}\end{matrix}\right)\left(\begin{matrix}1800\\3000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{70}&\frac{2}{35}\\\frac{2}{35}&-\frac{3}{70}\end{matrix}\right)\left(\begin{matrix}1800\\3000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{70}\times 1800+\frac{2}{35}\times 3000\\\frac{2}{35}\times 1800-\frac{3}{70}\times 3000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{660}{7}\\-\frac{180}{7}\end{matrix}\right)
Do the arithmetic.
x=\frac{660}{7},y=-\frac{180}{7}
Extract the matrix elements x and y.
30x+40y=1800,40x+30y=3000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
40\times 30x+40\times 40y=40\times 1800,30\times 40x+30\times 30y=30\times 3000
To make 30x and 40x equal, multiply all terms on each side of the first equation by 40 and all terms on each side of the second by 30.
1200x+1600y=72000,1200x+900y=90000
Simplify.
1200x-1200x+1600y-900y=72000-90000
Subtract 1200x+900y=90000 from 1200x+1600y=72000 by subtracting like terms on each side of the equal sign.
1600y-900y=72000-90000
Add 1200x to -1200x. Terms 1200x and -1200x cancel out, leaving an equation with only one variable that can be solved.
700y=72000-90000
Add 1600y to -900y.
700y=-18000
Add 72000 to -90000.
y=-\frac{180}{7}
Divide both sides by 700.
40x+30\left(-\frac{180}{7}\right)=3000
Substitute -\frac{180}{7} for y in 40x+30y=3000. Because the resulting equation contains only one variable, you can solve for x directly.
40x-\frac{5400}{7}=3000
Multiply 30 times -\frac{180}{7}.
40x=\frac{26400}{7}
Add \frac{5400}{7} to both sides of the equation.
x=\frac{660}{7}
Divide both sides by 40.
x=\frac{660}{7},y=-\frac{180}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}