Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

2x_{1}-x_{2}-x_{3}=4 3x_{1}+4x_{2}-2x_{3}=11 3x_{1}-2x_{2}+4x_{3}=11
Reorder the equations.
x_{2}=2x_{1}-x_{3}-4
Solve 2x_{1}-x_{2}-x_{3}=4 for x_{2}.
3x_{1}+4\left(2x_{1}-x_{3}-4\right)-2x_{3}=11 3x_{1}-2\left(2x_{1}-x_{3}-4\right)+4x_{3}=11
Substitute 2x_{1}-x_{3}-4 for x_{2} in the second and third equation.
x_{1}=\frac{27}{11}+\frac{6}{11}x_{3} x_{3}=\frac{1}{6}x_{1}+\frac{1}{2}
Solve these equations for x_{1} and x_{3} respectively.
x_{3}=\frac{1}{6}\left(\frac{27}{11}+\frac{6}{11}x_{3}\right)+\frac{1}{2}
Substitute \frac{27}{11}+\frac{6}{11}x_{3} for x_{1} in the equation x_{3}=\frac{1}{6}x_{1}+\frac{1}{2}.
x_{3}=1
Solve x_{3}=\frac{1}{6}\left(\frac{27}{11}+\frac{6}{11}x_{3}\right)+\frac{1}{2} for x_{3}.
x_{1}=\frac{27}{11}+\frac{6}{11}\times 1
Substitute 1 for x_{3} in the equation x_{1}=\frac{27}{11}+\frac{6}{11}x_{3}.
x_{1}=3
Calculate x_{1} from x_{1}=\frac{27}{11}+\frac{6}{11}\times 1.
x_{2}=2\times 3-1-4
Substitute 3 for x_{1} and 1 for x_{3} in the equation x_{2}=2x_{1}-x_{3}-4.
x_{2}=1
Calculate x_{2} from x_{2}=2\times 3-1-4.
x_{1}=3 x_{2}=1 x_{3}=1
The system is now solved.