\left\{ \begin{array} { l } { 3 x - y = 3 } \\ { x - 2 = 6 } \end{array} \right.
Solve for x, y
x=8
y=21
Graph
Share
Copied to clipboard
x=6+2
Consider the second equation. Add 2 to both sides.
x=8
Add 6 and 2 to get 8.
3\times 8-y=3
Consider the first equation. Insert the known values of variables into the equation.
24-y=3
Multiply 3 and 8 to get 24.
-y=3-24
Subtract 24 from both sides.
-y=-21
Subtract 24 from 3 to get -21.
y=\frac{-21}{-1}
Divide both sides by -1.
y=21
Fraction \frac{-21}{-1} can be simplified to 21 by removing the negative sign from both the numerator and the denominator.
x=8 y=21
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}