\left\{ \begin{array} { l } { 3 x - y + 2 = 0 } \\ { \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 4 } = 1 } \end{array} \right.
Solve for x, y
x=0\text{, }y=2
x=-\frac{48}{37}\approx -1.297297297\text{, }y=-\frac{70}{37}\approx -1.891891892
Graph
Share
Copied to clipboard
3x-y+2=0,\frac{1}{4}y^{2}+\frac{1}{16}x^{2}=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x-y+2=0
Solve 3x-y+2=0 for x by isolating x on the left hand side of the equal sign.
3x-y=-2
Subtract 2 from both sides of the equation.
3x=y-2
Subtract -y from both sides of the equation.
x=\frac{1}{3}y-\frac{2}{3}
Divide both sides by 3.
\frac{1}{4}y^{2}+\frac{1}{16}\left(\frac{1}{3}y-\frac{2}{3}\right)^{2}=1
Substitute \frac{1}{3}y-\frac{2}{3} for x in the other equation, \frac{1}{4}y^{2}+\frac{1}{16}x^{2}=1.
\frac{1}{4}y^{2}+\frac{1}{16}\left(\frac{1}{9}y^{2}-\frac{4}{9}y+\frac{4}{9}\right)=1
Square \frac{1}{3}y-\frac{2}{3}.
\frac{1}{4}y^{2}+\frac{1}{144}y^{2}-\frac{1}{36}y+\frac{1}{36}=1
Multiply \frac{1}{16} times \frac{1}{9}y^{2}-\frac{4}{9}y+\frac{4}{9}.
\frac{37}{144}y^{2}-\frac{1}{36}y+\frac{1}{36}=1
Add \frac{1}{4}y^{2} to \frac{1}{144}y^{2}.
\frac{37}{144}y^{2}-\frac{1}{36}y-\frac{35}{36}=0
Subtract 1 from both sides of the equation.
y=\frac{-\left(-\frac{1}{36}\right)±\sqrt{\left(-\frac{1}{36}\right)^{2}-4\times \frac{37}{144}\left(-\frac{35}{36}\right)}}{2\times \frac{37}{144}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{4}+\frac{1}{16}\times \left(\frac{1}{3}\right)^{2} for a, \frac{1}{16}\left(-\frac{2}{3}\right)\times \frac{1}{3}\times 2 for b, and -\frac{35}{36} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{1}{36}\right)±\sqrt{\frac{1}{1296}-4\times \frac{37}{144}\left(-\frac{35}{36}\right)}}{2\times \frac{37}{144}}
Square \frac{1}{16}\left(-\frac{2}{3}\right)\times \frac{1}{3}\times 2.
y=\frac{-\left(-\frac{1}{36}\right)±\sqrt{\frac{1}{1296}-\frac{37}{36}\left(-\frac{35}{36}\right)}}{2\times \frac{37}{144}}
Multiply -4 times \frac{1}{4}+\frac{1}{16}\times \left(\frac{1}{3}\right)^{2}.
y=\frac{-\left(-\frac{1}{36}\right)±\sqrt{\frac{1+1295}{1296}}}{2\times \frac{37}{144}}
Multiply -\frac{37}{36} times -\frac{35}{36} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{1}{36}\right)±\sqrt{1}}{2\times \frac{37}{144}}
Add \frac{1}{1296} to \frac{1295}{1296} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{1}{36}\right)±1}{2\times \frac{37}{144}}
Take the square root of 1.
y=\frac{\frac{1}{36}±1}{2\times \frac{37}{144}}
The opposite of \frac{1}{16}\left(-\frac{2}{3}\right)\times \frac{1}{3}\times 2 is \frac{1}{36}.
y=\frac{\frac{1}{36}±1}{\frac{37}{72}}
Multiply 2 times \frac{1}{4}+\frac{1}{16}\times \left(\frac{1}{3}\right)^{2}.
y=\frac{\frac{37}{36}}{\frac{37}{72}}
Now solve the equation y=\frac{\frac{1}{36}±1}{\frac{37}{72}} when ± is plus. Add \frac{1}{36} to 1.
y=2
Divide \frac{37}{36} by \frac{37}{72} by multiplying \frac{37}{36} by the reciprocal of \frac{37}{72}.
y=-\frac{\frac{35}{36}}{\frac{37}{72}}
Now solve the equation y=\frac{\frac{1}{36}±1}{\frac{37}{72}} when ± is minus. Subtract 1 from \frac{1}{36}.
y=-\frac{70}{37}
Divide -\frac{35}{36} by \frac{37}{72} by multiplying -\frac{35}{36} by the reciprocal of \frac{37}{72}.
x=\frac{1}{3}\times 2-\frac{2}{3}
There are two solutions for y: 2 and -\frac{70}{37}. Substitute 2 for y in the equation x=\frac{1}{3}y-\frac{2}{3} to find the corresponding solution for x that satisfies both equations.
x=\frac{2-2}{3}
Multiply \frac{1}{3} times 2.
x=0
Add \frac{1}{3}\times 2 to -\frac{2}{3}.
x=\frac{1}{3}\left(-\frac{70}{37}\right)-\frac{2}{3}
Now substitute -\frac{70}{37} for y in the equation x=\frac{1}{3}y-\frac{2}{3} and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{70}{111}-\frac{2}{3}
Multiply \frac{1}{3} times -\frac{70}{37} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=-\frac{48}{37}
Add -\frac{70}{37}\times \frac{1}{3} to -\frac{2}{3}.
x=0,y=2\text{ or }x=-\frac{48}{37},y=-\frac{70}{37}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}