\left\{ \begin{array} { l } { 3 x - 4 y - ( 2 x - 7 ) = 0 } \\ { 5 ( x - 1 ) - ( 2 x - 1 ) = 0 } \end{array} \right.
Solve for x, y
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
y = \frac{25}{12} = 2\frac{1}{12} \approx 2.083333333
Graph
Share
Copied to clipboard
5x-5-\left(2x-1\right)=0
Consider the second equation. Use the distributive property to multiply 5 by x-1.
5x-5-2x+1=0
To find the opposite of 2x-1, find the opposite of each term.
3x-5+1=0
Combine 5x and -2x to get 3x.
3x-4=0
Add -5 and 1 to get -4.
3x=4
Add 4 to both sides. Anything plus zero gives itself.
x=\frac{4}{3}
Divide both sides by 3.
3\times \frac{4}{3}-4y-\left(2\times \frac{4}{3}-7\right)=0
Consider the first equation. Insert the known values of variables into the equation.
4-4y-\left(2\times \frac{4}{3}-7\right)=0
Multiply 3 and \frac{4}{3} to get 4.
4-4y-\left(\frac{8}{3}-7\right)=0
Multiply 2 and \frac{4}{3} to get \frac{8}{3}.
4-4y-\left(-\frac{13}{3}\right)=0
Subtract 7 from \frac{8}{3} to get -\frac{13}{3}.
4-4y+\frac{13}{3}=0
Multiply -1 and -\frac{13}{3} to get \frac{13}{3}.
\frac{25}{3}-4y=0
Add 4 and \frac{13}{3} to get \frac{25}{3}.
-4y=-\frac{25}{3}
Subtract \frac{25}{3} from both sides. Anything subtracted from zero gives its negation.
y=\frac{-\frac{25}{3}}{-4}
Divide both sides by -4.
y=\frac{-25}{3\left(-4\right)}
Express \frac{-\frac{25}{3}}{-4} as a single fraction.
y=\frac{-25}{-12}
Multiply 3 and -4 to get -12.
y=\frac{25}{12}
Fraction \frac{-25}{-12} can be simplified to \frac{25}{12} by removing the negative sign from both the numerator and the denominator.
x=\frac{4}{3} y=\frac{25}{12}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}