Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x-4y=7,\frac{1}{2}\left(x+3\right)-y=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x-4y=7
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=4y+7
Add 4y to both sides of the equation.
x=\frac{1}{3}\left(4y+7\right)
Divide both sides by 3.
x=\frac{4}{3}y+\frac{7}{3}
Multiply \frac{1}{3} times 4y+7.
\frac{1}{2}\left(\frac{4}{3}y+\frac{7}{3}+3\right)-y=4
Substitute \frac{4y+7}{3} for x in the other equation, \frac{1}{2}\left(x+3\right)-y=4.
\frac{1}{2}\left(\frac{4}{3}y+\frac{16}{3}\right)-y=4
Add \frac{7}{3} to 3.
\frac{2}{3}y+\frac{8}{3}-y=4
Multiply \frac{1}{2} times \frac{16+4y}{3}.
-\frac{1}{3}y+\frac{8}{3}=4
Add \frac{2y}{3} to -y.
-\frac{1}{3}y=\frac{4}{3}
Subtract \frac{8}{3} from both sides of the equation.
y=-4
Multiply both sides by -3.
x=\frac{4}{3}\left(-4\right)+\frac{7}{3}
Substitute -4 for y in x=\frac{4}{3}y+\frac{7}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-16+7}{3}
Multiply \frac{4}{3} times -4.
x=-3
Add \frac{7}{3} to -\frac{16}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-3,y=-4
The system is now solved.
3x-4y=7,\frac{1}{2}\left(x+3\right)-y=4
Put the equations in standard form and then use matrices to solve the system of equations.
\frac{1}{2}\left(x+3\right)-y=4
Simplify the second equation to put it in standard form.
\frac{1}{2}x+\frac{3}{2}-y=4
Multiply \frac{1}{2} times x+3.
\frac{1}{2}x-y=\frac{5}{2}
Subtract \frac{3}{2} from both sides of the equation.
\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\\frac{5}{2}\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right))\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right))\left(\begin{matrix}7\\\frac{5}{2}\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right))\left(\begin{matrix}7\\\frac{5}{2}\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right))\left(\begin{matrix}7\\\frac{5}{2}\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-4\times \frac{1}{2}\right)}&-\frac{-4}{3\left(-1\right)-\left(-4\times \frac{1}{2}\right)}\\-\frac{\frac{1}{2}}{3\left(-1\right)-\left(-4\times \frac{1}{2}\right)}&\frac{3}{3\left(-1\right)-\left(-4\times \frac{1}{2}\right)}\end{matrix}\right)\left(\begin{matrix}7\\\frac{5}{2}\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-4\\\frac{1}{2}&-3\end{matrix}\right)\left(\begin{matrix}7\\\frac{5}{2}\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7-4\times \frac{5}{2}\\\frac{1}{2}\times 7-3\times \frac{5}{2}\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-4\end{matrix}\right)
Do the arithmetic.
x=-3,y=-4
Extract the matrix elements x and y.