Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2y+x=2,3x^{2}-y^{2}=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2y+x=2
Solve 2y+x=2 for y by isolating y on the left hand side of the equal sign.
2y=-x+2
Subtract x from both sides of the equation.
y=-\frac{1}{2}x+1
Divide both sides by 2.
3x^{2}-\left(-\frac{1}{2}x+1\right)^{2}=0
Substitute -\frac{1}{2}x+1 for y in the other equation, 3x^{2}-y^{2}=0.
3x^{2}-\left(\frac{1}{4}x^{2}-x+1\right)=0
Square -\frac{1}{2}x+1.
3x^{2}-\frac{1}{4}x^{2}+x-1=0
Multiply -1 times \frac{1}{4}x^{2}-x+1.
\frac{11}{4}x^{2}+x-1=0
Add 3x^{2} to -\frac{1}{4}x^{2}.
x=\frac{-1±\sqrt{1^{2}-4\times \frac{11}{4}\left(-1\right)}}{2\times \frac{11}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3-\left(-\frac{1}{2}\right)^{2} for a, -\left(-\frac{1}{2}\right)\times 2 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times \frac{11}{4}\left(-1\right)}}{2\times \frac{11}{4}}
Square -\left(-\frac{1}{2}\right)\times 2.
x=\frac{-1±\sqrt{1-11\left(-1\right)}}{2\times \frac{11}{4}}
Multiply -4 times 3-\left(-\frac{1}{2}\right)^{2}.
x=\frac{-1±\sqrt{1+11}}{2\times \frac{11}{4}}
Multiply -11 times -1.
x=\frac{-1±\sqrt{12}}{2\times \frac{11}{4}}
Add 1 to 11.
x=\frac{-1±2\sqrt{3}}{2\times \frac{11}{4}}
Take the square root of 12.
x=\frac{-1±2\sqrt{3}}{\frac{11}{2}}
Multiply 2 times 3-\left(-\frac{1}{2}\right)^{2}.
x=\frac{2\sqrt{3}-1}{\frac{11}{2}}
Now solve the equation x=\frac{-1±2\sqrt{3}}{\frac{11}{2}} when ± is plus. Add -1 to 2\sqrt{3}.
x=\frac{4\sqrt{3}-2}{11}
Divide -1+2\sqrt{3} by \frac{11}{2} by multiplying -1+2\sqrt{3} by the reciprocal of \frac{11}{2}.
x=\frac{-2\sqrt{3}-1}{\frac{11}{2}}
Now solve the equation x=\frac{-1±2\sqrt{3}}{\frac{11}{2}} when ± is minus. Subtract 2\sqrt{3} from -1.
x=\frac{-4\sqrt{3}-2}{11}
Divide -1-2\sqrt{3} by \frac{11}{2} by multiplying -1-2\sqrt{3} by the reciprocal of \frac{11}{2}.
y=-\frac{1}{2}\times \frac{4\sqrt{3}-2}{11}+1
There are two solutions for x: \frac{-2+4\sqrt{3}}{11} and \frac{-2-4\sqrt{3}}{11}. Substitute \frac{-2+4\sqrt{3}}{11} for x in the equation y=-\frac{1}{2}x+1 to find the corresponding solution for y that satisfies both equations.
y=-\frac{4\sqrt{3}-2}{2\times 11}+1
Multiply -\frac{1}{2} times \frac{-2+4\sqrt{3}}{11}.
y=-\frac{1}{2}\times \frac{-4\sqrt{3}-2}{11}+1
Now substitute \frac{-2-4\sqrt{3}}{11} for x in the equation y=-\frac{1}{2}x+1 and solve to find the corresponding solution for y that satisfies both equations.
y=-\frac{-4\sqrt{3}-2}{2\times 11}+1
Multiply -\frac{1}{2} times \frac{-2-4\sqrt{3}}{11}.
y=-\frac{4\sqrt{3}-2}{2\times 11}+1,x=\frac{4\sqrt{3}-2}{11}\text{ or }y=-\frac{-4\sqrt{3}-2}{2\times 11}+1,x=\frac{-4\sqrt{3}-2}{11}
The system is now solved.