Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x-5y=0
Consider the first equation. Subtract 5y from both sides.
2x+2=2y+x
Consider the second equation. Combine x and x to get 2x.
2x+2-2y=x
Subtract 2y from both sides.
2x+2-2y-x=0
Subtract x from both sides.
x+2-2y=0
Combine 2x and -x to get x.
x-2y=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
3x-5y=0,x-2y=-2
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x-5y=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=5y
Add 5y to both sides of the equation.
x=\frac{1}{3}\times 5y
Divide both sides by 3.
x=\frac{5}{3}y
Multiply \frac{1}{3} times 5y.
\frac{5}{3}y-2y=-2
Substitute \frac{5y}{3} for x in the other equation, x-2y=-2.
-\frac{1}{3}y=-2
Add \frac{5y}{3} to -2y.
y=6
Multiply both sides by -3.
x=\frac{5}{3}\times 6
Substitute 6 for y in x=\frac{5}{3}y. Because the resulting equation contains only one variable, you can solve for x directly.
x=10
Multiply \frac{5}{3} times 6.
x=10,y=6
The system is now solved.
3x-5y=0
Consider the first equation. Subtract 5y from both sides.
2x+2=2y+x
Consider the second equation. Combine x and x to get 2x.
2x+2-2y=x
Subtract 2y from both sides.
2x+2-2y-x=0
Subtract x from both sides.
x+2-2y=0
Combine 2x and -x to get x.
x-2y=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
3x-5y=0,x-2y=-2
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&-5\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-2\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&-5\\1&-2\end{matrix}\right))\left(\begin{matrix}3&-5\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\1&-2\end{matrix}\right))\left(\begin{matrix}0\\-2\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&-5\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\1&-2\end{matrix}\right))\left(\begin{matrix}0\\-2\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\1&-2\end{matrix}\right))\left(\begin{matrix}0\\-2\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-\left(-5\right)}&-\frac{-5}{3\left(-2\right)-\left(-5\right)}\\-\frac{1}{3\left(-2\right)-\left(-5\right)}&\frac{3}{3\left(-2\right)-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}0\\-2\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-5\\1&-3\end{matrix}\right)\left(\begin{matrix}0\\-2\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\left(-2\right)\\-3\left(-2\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\6\end{matrix}\right)
Do the arithmetic.
x=10,y=6
Extract the matrix elements x and y.
3x-5y=0
Consider the first equation. Subtract 5y from both sides.
2x+2=2y+x
Consider the second equation. Combine x and x to get 2x.
2x+2-2y=x
Subtract 2y from both sides.
2x+2-2y-x=0
Subtract x from both sides.
x+2-2y=0
Combine 2x and -x to get x.
x-2y=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
3x-5y=0,x-2y=-2
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3x-5y=0,3x+3\left(-2\right)y=3\left(-2\right)
To make 3x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 3.
3x-5y=0,3x-6y=-6
Simplify.
3x-3x-5y+6y=6
Subtract 3x-6y=-6 from 3x-5y=0 by subtracting like terms on each side of the equal sign.
-5y+6y=6
Add 3x to -3x. Terms 3x and -3x cancel out, leaving an equation with only one variable that can be solved.
y=6
Add -5y to 6y.
x-2\times 6=-2
Substitute 6 for y in x-2y=-2. Because the resulting equation contains only one variable, you can solve for x directly.
x-12=-2
Multiply -2 times 6.
x=10
Add 12 to both sides of the equation.
x=10,y=6
The system is now solved.