\left\{ \begin{array} { l } { 3 x + y - 4 z = 3 } \\ { 5 x - y + 3 z = 5 } \\ { x + y - z = 3 } \end{array} \right.
Solve for x, y, z
x = \frac{12}{11} = 1\frac{1}{11} \approx 1.090909091
y = \frac{29}{11} = 2\frac{7}{11} \approx 2.636363636
z=\frac{8}{11}\approx 0.727272727
Share
Copied to clipboard
y=-3x+4z+3
Solve 3x+y-4z=3 for y.
5x-\left(-3x+4z+3\right)+3z=5 x-3x+4z+3-z=3
Substitute -3x+4z+3 for y in the second and third equation.
x=\frac{1}{8}z+1 z=\frac{2}{3}x
Solve these equations for x and z respectively.
z=\frac{2}{3}\left(\frac{1}{8}z+1\right)
Substitute \frac{1}{8}z+1 for x in the equation z=\frac{2}{3}x.
z=\frac{8}{11}
Solve z=\frac{2}{3}\left(\frac{1}{8}z+1\right) for z.
x=\frac{1}{8}\times \frac{8}{11}+1
Substitute \frac{8}{11} for z in the equation x=\frac{1}{8}z+1.
x=\frac{12}{11}
Calculate x from x=\frac{1}{8}\times \frac{8}{11}+1.
y=-3\times \frac{12}{11}+4\times \frac{8}{11}+3
Substitute \frac{12}{11} for x and \frac{8}{11} for z in the equation y=-3x+4z+3.
y=\frac{29}{11}
Calculate y from y=-3\times \frac{12}{11}+4\times \frac{8}{11}+3.
x=\frac{12}{11} y=\frac{29}{11} z=\frac{8}{11}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}