\left\{ \begin{array} { l } { 3 x + y = 5 } \\ { 5 x + 4 = 0 } \end{array} \right.
Solve for x, y
x=-\frac{4}{5}=-0.8
y = \frac{37}{5} = 7\frac{2}{5} = 7.4
Graph
Share
Copied to clipboard
5x=-4
Consider the second equation. Subtract 4 from both sides. Anything subtracted from zero gives its negation.
x=-\frac{4}{5}
Divide both sides by 5.
3\left(-\frac{4}{5}\right)+y=5
Consider the first equation. Insert the known values of variables into the equation.
-\frac{12}{5}+y=5
Multiply 3 and -\frac{4}{5} to get -\frac{12}{5}.
y=5+\frac{12}{5}
Add \frac{12}{5} to both sides.
y=\frac{37}{5}
Add 5 and \frac{12}{5} to get \frac{37}{5}.
x=-\frac{4}{5} y=\frac{37}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}