\left\{ \begin{array} { l } { 3 x + 60 t = 53 } \\ { 151 + 5 t = 53 } \end{array} \right.
Solve for x, t
x = \frac{1229}{3} = 409\frac{2}{3} \approx 409.666666667
t = -\frac{98}{5} = -19\frac{3}{5} = -19.6
Share
Copied to clipboard
5t=53-151
Consider the second equation. Subtract 151 from both sides.
5t=-98
Subtract 151 from 53 to get -98.
t=-\frac{98}{5}
Divide both sides by 5.
3x+60\left(-\frac{98}{5}\right)=53
Consider the first equation. Insert the known values of variables into the equation.
3x-1176=53
Multiply 60 and -\frac{98}{5} to get -1176.
3x=53+1176
Add 1176 to both sides.
3x=1229
Add 53 and 1176 to get 1229.
x=\frac{1229}{3}
Divide both sides by 3.
x=\frac{1229}{3} t=-\frac{98}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}