\left\{ \begin{array} { l } { 3 x + 6 y = 24 } \\ { 9 x + 5 y = 68 } \end{array} \right.
Solve for x, y
x = \frac{96}{13} = 7\frac{5}{13} \approx 7.384615385
y=\frac{4}{13}\approx 0.307692308
Graph
Share
Copied to clipboard
3x+6y=24,9x+5y=68
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+6y=24
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-6y+24
Subtract 6y from both sides of the equation.
x=\frac{1}{3}\left(-6y+24\right)
Divide both sides by 3.
x=-2y+8
Multiply \frac{1}{3} times -6y+24.
9\left(-2y+8\right)+5y=68
Substitute -2y+8 for x in the other equation, 9x+5y=68.
-18y+72+5y=68
Multiply 9 times -2y+8.
-13y+72=68
Add -18y to 5y.
-13y=-4
Subtract 72 from both sides of the equation.
y=\frac{4}{13}
Divide both sides by -13.
x=-2\times \frac{4}{13}+8
Substitute \frac{4}{13} for y in x=-2y+8. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{8}{13}+8
Multiply -2 times \frac{4}{13}.
x=\frac{96}{13}
Add 8 to -\frac{8}{13}.
x=\frac{96}{13},y=\frac{4}{13}
The system is now solved.
3x+6y=24,9x+5y=68
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&6\\9&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\68\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&6\\9&5\end{matrix}\right))\left(\begin{matrix}3&6\\9&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&6\\9&5\end{matrix}\right))\left(\begin{matrix}24\\68\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&6\\9&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&6\\9&5\end{matrix}\right))\left(\begin{matrix}24\\68\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&6\\9&5\end{matrix}\right))\left(\begin{matrix}24\\68\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-6\times 9}&-\frac{6}{3\times 5-6\times 9}\\-\frac{9}{3\times 5-6\times 9}&\frac{3}{3\times 5-6\times 9}\end{matrix}\right)\left(\begin{matrix}24\\68\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{39}&\frac{2}{13}\\\frac{3}{13}&-\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}24\\68\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{39}\times 24+\frac{2}{13}\times 68\\\frac{3}{13}\times 24-\frac{1}{13}\times 68\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{96}{13}\\\frac{4}{13}\end{matrix}\right)
Do the arithmetic.
x=\frac{96}{13},y=\frac{4}{13}
Extract the matrix elements x and y.
3x+6y=24,9x+5y=68
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
9\times 3x+9\times 6y=9\times 24,3\times 9x+3\times 5y=3\times 68
To make 3x and 9x equal, multiply all terms on each side of the first equation by 9 and all terms on each side of the second by 3.
27x+54y=216,27x+15y=204
Simplify.
27x-27x+54y-15y=216-204
Subtract 27x+15y=204 from 27x+54y=216 by subtracting like terms on each side of the equal sign.
54y-15y=216-204
Add 27x to -27x. Terms 27x and -27x cancel out, leaving an equation with only one variable that can be solved.
39y=216-204
Add 54y to -15y.
39y=12
Add 216 to -204.
y=\frac{4}{13}
Divide both sides by 39.
9x+5\times \frac{4}{13}=68
Substitute \frac{4}{13} for y in 9x+5y=68. Because the resulting equation contains only one variable, you can solve for x directly.
9x+\frac{20}{13}=68
Multiply 5 times \frac{4}{13}.
9x=\frac{864}{13}
Subtract \frac{20}{13} from both sides of the equation.
x=\frac{96}{13}
Divide both sides by 9.
x=\frac{96}{13},y=\frac{4}{13}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}