\left\{ \begin{array} { l } { 3 x + 5 y = 700 } \\ { 5 x + 6 y = 1050 } \end{array} \right.
Solve for x, y
x=150
y=50
Graph
Share
Copied to clipboard
3x+5y=700,5x+6y=1050
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+5y=700
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-5y+700
Subtract 5y from both sides of the equation.
x=\frac{1}{3}\left(-5y+700\right)
Divide both sides by 3.
x=-\frac{5}{3}y+\frac{700}{3}
Multiply \frac{1}{3} times -5y+700.
5\left(-\frac{5}{3}y+\frac{700}{3}\right)+6y=1050
Substitute \frac{-5y+700}{3} for x in the other equation, 5x+6y=1050.
-\frac{25}{3}y+\frac{3500}{3}+6y=1050
Multiply 5 times \frac{-5y+700}{3}.
-\frac{7}{3}y+\frac{3500}{3}=1050
Add -\frac{25y}{3} to 6y.
-\frac{7}{3}y=-\frac{350}{3}
Subtract \frac{3500}{3} from both sides of the equation.
y=50
Divide both sides of the equation by -\frac{7}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{5}{3}\times 50+\frac{700}{3}
Substitute 50 for y in x=-\frac{5}{3}y+\frac{700}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-250+700}{3}
Multiply -\frac{5}{3} times 50.
x=150
Add \frac{700}{3} to -\frac{250}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=150,y=50
The system is now solved.
3x+5y=700,5x+6y=1050
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&5\\5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}700\\1050\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&5\\5&6\end{matrix}\right))\left(\begin{matrix}3&5\\5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&6\end{matrix}\right))\left(\begin{matrix}700\\1050\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&5\\5&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&6\end{matrix}\right))\left(\begin{matrix}700\\1050\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&6\end{matrix}\right))\left(\begin{matrix}700\\1050\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{3\times 6-5\times 5}&-\frac{5}{3\times 6-5\times 5}\\-\frac{5}{3\times 6-5\times 5}&\frac{3}{3\times 6-5\times 5}\end{matrix}\right)\left(\begin{matrix}700\\1050\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{7}&\frac{5}{7}\\\frac{5}{7}&-\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}700\\1050\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{7}\times 700+\frac{5}{7}\times 1050\\\frac{5}{7}\times 700-\frac{3}{7}\times 1050\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}150\\50\end{matrix}\right)
Do the arithmetic.
x=150,y=50
Extract the matrix elements x and y.
3x+5y=700,5x+6y=1050
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5\times 3x+5\times 5y=5\times 700,3\times 5x+3\times 6y=3\times 1050
To make 3x and 5x equal, multiply all terms on each side of the first equation by 5 and all terms on each side of the second by 3.
15x+25y=3500,15x+18y=3150
Simplify.
15x-15x+25y-18y=3500-3150
Subtract 15x+18y=3150 from 15x+25y=3500 by subtracting like terms on each side of the equal sign.
25y-18y=3500-3150
Add 15x to -15x. Terms 15x and -15x cancel out, leaving an equation with only one variable that can be solved.
7y=3500-3150
Add 25y to -18y.
7y=350
Add 3500 to -3150.
y=50
Divide both sides by 7.
5x+6\times 50=1050
Substitute 50 for y in 5x+6y=1050. Because the resulting equation contains only one variable, you can solve for x directly.
5x+300=1050
Multiply 6 times 50.
5x=750
Subtract 300 from both sides of the equation.
x=150
Divide both sides by 5.
x=150,y=50
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}