Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x+5y=370,5x+4y=400
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+5y=370
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-5y+370
Subtract 5y from both sides of the equation.
x=\frac{1}{3}\left(-5y+370\right)
Divide both sides by 3.
x=-\frac{5}{3}y+\frac{370}{3}
Multiply \frac{1}{3} times -5y+370.
5\left(-\frac{5}{3}y+\frac{370}{3}\right)+4y=400
Substitute \frac{-5y+370}{3} for x in the other equation, 5x+4y=400.
-\frac{25}{3}y+\frac{1850}{3}+4y=400
Multiply 5 times \frac{-5y+370}{3}.
-\frac{13}{3}y+\frac{1850}{3}=400
Add -\frac{25y}{3} to 4y.
-\frac{13}{3}y=-\frac{650}{3}
Subtract \frac{1850}{3} from both sides of the equation.
y=50
Divide both sides of the equation by -\frac{13}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{5}{3}\times 50+\frac{370}{3}
Substitute 50 for y in x=-\frac{5}{3}y+\frac{370}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-250+370}{3}
Multiply -\frac{5}{3} times 50.
x=40
Add \frac{370}{3} to -\frac{250}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=40,y=50
The system is now solved.
3x+5y=370,5x+4y=400
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&5\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}370\\400\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&5\\5&4\end{matrix}\right))\left(\begin{matrix}3&5\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&4\end{matrix}\right))\left(\begin{matrix}370\\400\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&5\\5&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&4\end{matrix}\right))\left(\begin{matrix}370\\400\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&4\end{matrix}\right))\left(\begin{matrix}370\\400\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3\times 4-5\times 5}&-\frac{5}{3\times 4-5\times 5}\\-\frac{5}{3\times 4-5\times 5}&\frac{3}{3\times 4-5\times 5}\end{matrix}\right)\left(\begin{matrix}370\\400\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{13}&\frac{5}{13}\\\frac{5}{13}&-\frac{3}{13}\end{matrix}\right)\left(\begin{matrix}370\\400\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{13}\times 370+\frac{5}{13}\times 400\\\frac{5}{13}\times 370-\frac{3}{13}\times 400\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\50\end{matrix}\right)
Do the arithmetic.
x=40,y=50
Extract the matrix elements x and y.
3x+5y=370,5x+4y=400
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5\times 3x+5\times 5y=5\times 370,3\times 5x+3\times 4y=3\times 400
To make 3x and 5x equal, multiply all terms on each side of the first equation by 5 and all terms on each side of the second by 3.
15x+25y=1850,15x+12y=1200
Simplify.
15x-15x+25y-12y=1850-1200
Subtract 15x+12y=1200 from 15x+25y=1850 by subtracting like terms on each side of the equal sign.
25y-12y=1850-1200
Add 15x to -15x. Terms 15x and -15x cancel out, leaving an equation with only one variable that can be solved.
13y=1850-1200
Add 25y to -12y.
13y=650
Add 1850 to -1200.
y=50
Divide both sides by 13.
5x+4\times 50=400
Substitute 50 for y in 5x+4y=400. Because the resulting equation contains only one variable, you can solve for x directly.
5x+200=400
Multiply 4 times 50.
5x=200
Subtract 200 from both sides of the equation.
x=40
Divide both sides by 5.
x=40,y=50
The system is now solved.