\left\{ \begin{array} { l } { 3 x + 4 y + z = 0 } \\ { 2 x + 2 y + 1 = 0 } \\ { 4 x + 1 = 3 } \end{array} \right.
Solve for x, y, z
x=\frac{1}{2}=0.5
y=-1
z = \frac{5}{2} = 2\frac{1}{2} = 2.5
Share
Copied to clipboard
4x=3-1
Consider the third equation. Subtract 1 from both sides.
4x=2
Subtract 1 from 3 to get 2.
x=\frac{2}{4}
Divide both sides by 4.
x=\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
2\times \frac{1}{2}+2y+1=0
Consider the second equation. Insert the known values of variables into the equation.
1+2y+1=0
Multiply 2 and \frac{1}{2} to get 1.
2+2y=0
Add 1 and 1 to get 2.
2y=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
y=\frac{-2}{2}
Divide both sides by 2.
y=-1
Divide -2 by 2 to get -1.
3\times \frac{1}{2}+4\left(-1\right)+z=0
Consider the first equation. Insert the known values of variables into the equation.
\frac{3}{2}+4\left(-1\right)+z=0
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
\frac{3}{2}-4+z=0
Multiply 4 and -1 to get -4.
-\frac{5}{2}+z=0
Subtract 4 from \frac{3}{2} to get -\frac{5}{2}.
z=\frac{5}{2}
Add \frac{5}{2} to both sides. Anything plus zero gives itself.
x=\frac{1}{2} y=-1 z=\frac{5}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}