\left\{ \begin{array} { l } { 3 x + 4 = 0 } \\ { x - y = 1 } \end{array} \right.
Solve for x, y
x = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
y = -\frac{7}{3} = -2\frac{1}{3} \approx -2.333333333
Graph
Share
Copied to clipboard
3x=-4
Consider the first equation. Subtract 4 from both sides. Anything subtracted from zero gives its negation.
x=-\frac{4}{3}
Divide both sides by 3.
-\frac{4}{3}-y=1
Consider the second equation. Insert the known values of variables into the equation.
-y=1+\frac{4}{3}
Add \frac{4}{3} to both sides.
-y=\frac{7}{3}
Add 1 and \frac{4}{3} to get \frac{7}{3}.
y=\frac{\frac{7}{3}}{-1}
Divide both sides by -1.
y=\frac{7}{3\left(-1\right)}
Express \frac{\frac{7}{3}}{-1} as a single fraction.
y=\frac{7}{-3}
Multiply 3 and -1 to get -3.
y=-\frac{7}{3}
Fraction \frac{7}{-3} can be rewritten as -\frac{7}{3} by extracting the negative sign.
x=-\frac{4}{3} y=-\frac{7}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}