\left\{ \begin{array} { l } { 3 x + 3 y = 98 } \\ { 8 x + 3 y = 158 } \end{array} \right.
Solve for x, y
x=12
y = \frac{62}{3} = 20\frac{2}{3} \approx 20.666666667
Graph
Share
Copied to clipboard
3x+3y=98,8x+3y=158
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+3y=98
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-3y+98
Subtract 3y from both sides of the equation.
x=\frac{1}{3}\left(-3y+98\right)
Divide both sides by 3.
x=-y+\frac{98}{3}
Multiply \frac{1}{3} times -3y+98.
8\left(-y+\frac{98}{3}\right)+3y=158
Substitute -y+\frac{98}{3} for x in the other equation, 8x+3y=158.
-8y+\frac{784}{3}+3y=158
Multiply 8 times -y+\frac{98}{3}.
-5y+\frac{784}{3}=158
Add -8y to 3y.
-5y=-\frac{310}{3}
Subtract \frac{784}{3} from both sides of the equation.
y=\frac{62}{3}
Divide both sides by -5.
x=-\frac{62}{3}+\frac{98}{3}
Substitute \frac{62}{3} for y in x=-y+\frac{98}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-62+98}{3}
Multiply -1 times \frac{62}{3}.
x=12
Add \frac{98}{3} to -\frac{62}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=12,y=\frac{62}{3}
The system is now solved.
3x+3y=98,8x+3y=158
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&3\\8&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}98\\158\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&3\\8&3\end{matrix}\right))\left(\begin{matrix}3&3\\8&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\8&3\end{matrix}\right))\left(\begin{matrix}98\\158\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&3\\8&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\8&3\end{matrix}\right))\left(\begin{matrix}98\\158\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\8&3\end{matrix}\right))\left(\begin{matrix}98\\158\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-3\times 8}&-\frac{3}{3\times 3-3\times 8}\\-\frac{8}{3\times 3-3\times 8}&\frac{3}{3\times 3-3\times 8}\end{matrix}\right)\left(\begin{matrix}98\\158\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{1}{5}\\\frac{8}{15}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}98\\158\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 98+\frac{1}{5}\times 158\\\frac{8}{15}\times 98-\frac{1}{5}\times 158\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\\frac{62}{3}\end{matrix}\right)
Do the arithmetic.
x=12,y=\frac{62}{3}
Extract the matrix elements x and y.
3x+3y=98,8x+3y=158
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3x-8x+3y-3y=98-158
Subtract 8x+3y=158 from 3x+3y=98 by subtracting like terms on each side of the equal sign.
3x-8x=98-158
Add 3y to -3y. Terms 3y and -3y cancel out, leaving an equation with only one variable that can be solved.
-5x=98-158
Add 3x to -8x.
-5x=-60
Add 98 to -158.
x=12
Divide both sides by -5.
8\times 12+3y=158
Substitute 12 for x in 8x+3y=158. Because the resulting equation contains only one variable, you can solve for y directly.
96+3y=158
Multiply 8 times 12.
3y=62
Subtract 96 from both sides of the equation.
y=\frac{62}{3}
Divide both sides by 3.
x=12,y=\frac{62}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}