\left\{ \begin{array} { l } { 3 x + 3 y = 25 } \\ { 2 x + 7 y - 3 z = 19 } \\ { 3 x + 2 y - z = 18 } \end{array} \right.
Solve for x, y, z
x = \frac{65}{12} = 5\frac{5}{12} \approx 5.416666667
y = \frac{35}{12} = 2\frac{11}{12} \approx 2.916666667
z = \frac{49}{12} = 4\frac{1}{12} \approx 4.083333333
Share
Copied to clipboard
3x+2y-z=18 2x+7y-3z=19 3x+3y=25
Reorder the equations.
z=3x+2y-18
Solve 3x+2y-z=18 for z.
2x+7y-3\left(3x+2y-18\right)=19
Substitute 3x+2y-18 for z in the equation 2x+7y-3z=19.
y=-35+7x x=-y+\frac{25}{3}
Solve the second equation for y and the third equation for x.
x=-\left(-35+7x\right)+\frac{25}{3}
Substitute -35+7x for y in the equation x=-y+\frac{25}{3}.
x=\frac{65}{12}
Solve x=-\left(-35+7x\right)+\frac{25}{3} for x.
y=-35+7\times \frac{65}{12}
Substitute \frac{65}{12} for x in the equation y=-35+7x.
y=\frac{35}{12}
Calculate y from y=-35+7\times \frac{65}{12}.
z=3\times \frac{65}{12}+2\times \frac{35}{12}-18
Substitute \frac{35}{12} for y and \frac{65}{12} for x in the equation z=3x+2y-18.
z=\frac{49}{12}
Calculate z from z=3\times \frac{65}{12}+2\times \frac{35}{12}-18.
x=\frac{65}{12} y=\frac{35}{12} z=\frac{49}{12}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}