Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x+2y=310,2x+5y=500
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+2y=310
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-2y+310
Subtract 2y from both sides of the equation.
x=\frac{1}{3}\left(-2y+310\right)
Divide both sides by 3.
x=-\frac{2}{3}y+\frac{310}{3}
Multiply \frac{1}{3} times -2y+310.
2\left(-\frac{2}{3}y+\frac{310}{3}\right)+5y=500
Substitute \frac{-2y+310}{3} for x in the other equation, 2x+5y=500.
-\frac{4}{3}y+\frac{620}{3}+5y=500
Multiply 2 times \frac{-2y+310}{3}.
\frac{11}{3}y+\frac{620}{3}=500
Add -\frac{4y}{3} to 5y.
\frac{11}{3}y=\frac{880}{3}
Subtract \frac{620}{3} from both sides of the equation.
y=80
Divide both sides of the equation by \frac{11}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{2}{3}\times 80+\frac{310}{3}
Substitute 80 for y in x=-\frac{2}{3}y+\frac{310}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-160+310}{3}
Multiply -\frac{2}{3} times 80.
x=50
Add \frac{310}{3} to -\frac{160}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=50,y=80
The system is now solved.
3x+2y=310,2x+5y=500
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&2\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}310\\500\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&2\\2&5\end{matrix}\right))\left(\begin{matrix}3&2\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&5\end{matrix}\right))\left(\begin{matrix}310\\500\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&2\\2&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&5\end{matrix}\right))\left(\begin{matrix}310\\500\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&5\end{matrix}\right))\left(\begin{matrix}310\\500\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-2\times 2}&-\frac{2}{3\times 5-2\times 2}\\-\frac{2}{3\times 5-2\times 2}&\frac{3}{3\times 5-2\times 2}\end{matrix}\right)\left(\begin{matrix}310\\500\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}&-\frac{2}{11}\\-\frac{2}{11}&\frac{3}{11}\end{matrix}\right)\left(\begin{matrix}310\\500\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}\times 310-\frac{2}{11}\times 500\\-\frac{2}{11}\times 310+\frac{3}{11}\times 500\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\80\end{matrix}\right)
Do the arithmetic.
x=50,y=80
Extract the matrix elements x and y.
3x+2y=310,2x+5y=500
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2\times 3x+2\times 2y=2\times 310,3\times 2x+3\times 5y=3\times 500
To make 3x and 2x equal, multiply all terms on each side of the first equation by 2 and all terms on each side of the second by 3.
6x+4y=620,6x+15y=1500
Simplify.
6x-6x+4y-15y=620-1500
Subtract 6x+15y=1500 from 6x+4y=620 by subtracting like terms on each side of the equal sign.
4y-15y=620-1500
Add 6x to -6x. Terms 6x and -6x cancel out, leaving an equation with only one variable that can be solved.
-11y=620-1500
Add 4y to -15y.
-11y=-880
Add 620 to -1500.
y=80
Divide both sides by -11.
2x+5\times 80=500
Substitute 80 for y in 2x+5y=500. Because the resulting equation contains only one variable, you can solve for x directly.
2x+400=500
Multiply 5 times 80.
2x=100
Subtract 400 from both sides of the equation.
x=50
Divide both sides by 2.
x=50,y=80
The system is now solved.