\left\{ \begin{array} { l } { 3 x + 2 y = 16 k } \\ { 5 x - 4 y = - 10 k } \end{array} \right.
Solve for x, y
x=2k
y=5k
Graph
Share
Copied to clipboard
3x+2y=16k,5x-4y=-10k
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+2y=16k
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-2y+16k
Subtract 2y from both sides of the equation.
x=\frac{1}{3}\left(-2y+16k\right)
Divide both sides by 3.
x=-\frac{2}{3}y+\frac{16k}{3}
Multiply \frac{1}{3} times -2y+16k.
5\left(-\frac{2}{3}y+\frac{16k}{3}\right)-4y=-10k
Substitute \frac{-2y+16k}{3} for x in the other equation, 5x-4y=-10k.
-\frac{10}{3}y+\frac{80k}{3}-4y=-10k
Multiply 5 times \frac{-2y+16k}{3}.
-\frac{22}{3}y+\frac{80k}{3}=-10k
Add -\frac{10y}{3} to -4y.
-\frac{22}{3}y=-\frac{110k}{3}
Subtract \frac{80k}{3} from both sides of the equation.
y=5k
Divide both sides of the equation by -\frac{22}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{2}{3}\times 5k+\frac{16k}{3}
Substitute 5k for y in x=-\frac{2}{3}y+\frac{16k}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-10k+16k}{3}
Multiply -\frac{2}{3} times 5k.
x=2k
Add \frac{16k}{3} to -\frac{10k}{3}.
x=2k,y=5k
The system is now solved.
3x+2y=16k,5x-4y=-10k
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&2\\5&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16k\\-10k\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&2\\5&-4\end{matrix}\right))\left(\begin{matrix}3&2\\5&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\5&-4\end{matrix}\right))\left(\begin{matrix}16k\\-10k\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&2\\5&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\5&-4\end{matrix}\right))\left(\begin{matrix}16k\\-10k\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\5&-4\end{matrix}\right))\left(\begin{matrix}16k\\-10k\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{3\left(-4\right)-2\times 5}&-\frac{2}{3\left(-4\right)-2\times 5}\\-\frac{5}{3\left(-4\right)-2\times 5}&\frac{3}{3\left(-4\right)-2\times 5}\end{matrix}\right)\left(\begin{matrix}16k\\-10k\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}&\frac{1}{11}\\\frac{5}{22}&-\frac{3}{22}\end{matrix}\right)\left(\begin{matrix}16k\\-10k\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\times 16k+\frac{1}{11}\left(-10k\right)\\\frac{5}{22}\times 16k-\frac{3}{22}\left(-10k\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2k\\5k\end{matrix}\right)
Do the arithmetic.
x=2k,y=5k
Extract the matrix elements x and y.
3x+2y=16k,5x-4y=-10k
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5\times 3x+5\times 2y=5\times 16k,3\times 5x+3\left(-4\right)y=3\left(-10k\right)
To make 3x and 5x equal, multiply all terms on each side of the first equation by 5 and all terms on each side of the second by 3.
15x+10y=80k,15x-12y=-30k
Simplify.
15x-15x+10y+12y=80k+30k
Subtract 15x-12y=-30k from 15x+10y=80k by subtracting like terms on each side of the equal sign.
10y+12y=80k+30k
Add 15x to -15x. Terms 15x and -15x cancel out, leaving an equation with only one variable that can be solved.
22y=80k+30k
Add 10y to 12y.
22y=110k
Add 80k to 30k.
y=5k
Divide both sides by 22.
5x-4\times 5k=-10k
Substitute 5k for y in 5x-4y=-10k. Because the resulting equation contains only one variable, you can solve for x directly.
5x-20k=-10k
Multiply -4 times 5k.
5x=10k
Add 20k to both sides of the equation.
x=2k
Divide both sides by 5.
x=2k,y=5k
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}