\left\{ \begin{array} { l } { 3 x + 2 y = 1,45 } \\ { 2 x + 5 y = 1170 } \end{array} \right.
Solve for x, y
x=-\frac{9331}{44}\approx -212,068181818
y=\frac{35071}{110}\approx 318,827272727
Graph
Share
Copied to clipboard
3x+2y=1,45;2x+5y=1170
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+2y=1,45
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-2y+1,45
Subtract 2y from both sides of the equation.
x=\frac{1}{3}\left(-2y+1,45\right)
Divide both sides by 3.
x=-\frac{2}{3}y+\frac{29}{60}
Multiply \frac{1}{3} times -2y+1,45.
2\left(-\frac{2}{3}y+\frac{29}{60}\right)+5y=1170
Substitute -\frac{2y}{3}+\frac{29}{60} for x in the other equation, 2x+5y=1170.
-\frac{4}{3}y+\frac{29}{30}+5y=1170
Multiply 2 times -\frac{2y}{3}+\frac{29}{60}.
\frac{11}{3}y+\frac{29}{30}=1170
Add -\frac{4y}{3} to 5y.
\frac{11}{3}y=\frac{35071}{30}
Subtract \frac{29}{30} from both sides of the equation.
y=\frac{35071}{110}
Divide both sides of the equation by \frac{11}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{2}{3}\times \frac{35071}{110}+\frac{29}{60}
Substitute \frac{35071}{110} for y in x=-\frac{2}{3}y+\frac{29}{60}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{35071}{165}+\frac{29}{60}
Multiply -\frac{2}{3} times \frac{35071}{110} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=-\frac{9331}{44}
Add \frac{29}{60} to -\frac{35071}{165} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{9331}{44};y=\frac{35071}{110}
The system is now solved.
3x+2y=1,45;2x+5y=1170
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&2\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1,45\\1170\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&2\\2&5\end{matrix}\right))\left(\begin{matrix}3&2\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&5\end{matrix}\right))\left(\begin{matrix}1,45\\1170\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&2\\2&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&5\end{matrix}\right))\left(\begin{matrix}1,45\\1170\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&5\end{matrix}\right))\left(\begin{matrix}1,45\\1170\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-2\times 2}&-\frac{2}{3\times 5-2\times 2}\\-\frac{2}{3\times 5-2\times 2}&\frac{3}{3\times 5-2\times 2}\end{matrix}\right)\left(\begin{matrix}1,45\\1170\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}&-\frac{2}{11}\\-\frac{2}{11}&\frac{3}{11}\end{matrix}\right)\left(\begin{matrix}1,45\\1170\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}\times 1,45-\frac{2}{11}\times 1170\\-\frac{2}{11}\times 1,45+\frac{3}{11}\times 1170\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9331}{44}\\\frac{35071}{110}\end{matrix}\right)
Do the arithmetic.
x=-\frac{9331}{44};y=\frac{35071}{110}
Extract the matrix elements x and y.
3x+2y=1,45;2x+5y=1170
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2\times 3x+2\times 2y=2\times 1,45;3\times 2x+3\times 5y=3\times 1170
To make 3x and 2x equal, multiply all terms on each side of the first equation by 2 and all terms on each side of the second by 3.
6x+4y=2,9;6x+15y=3510
Simplify.
6x-6x+4y-15y=2,9-3510
Subtract 6x+15y=3510 from 6x+4y=2,9 by subtracting like terms on each side of the equal sign.
4y-15y=2,9-3510
Add 6x to -6x. Terms 6x and -6x cancel out, leaving an equation with only one variable that can be solved.
-11y=2,9-3510
Add 4y to -15y.
-11y=-3507,1
Add 2,9 to -3510.
y=\frac{35071}{110}
Divide both sides by -11.
2x+5\times \frac{35071}{110}=1170
Substitute \frac{35071}{110} for y in 2x+5y=1170. Because the resulting equation contains only one variable, you can solve for x directly.
2x+\frac{35071}{22}=1170
Multiply 5 times \frac{35071}{110}.
2x=-\frac{9331}{22}
Subtract \frac{35071}{22} from both sides of the equation.
x=-\frac{9331}{44}
Divide both sides by 2.
x=-\frac{9331}{44};y=\frac{35071}{110}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}