\left\{ \begin{array} { l } { 3 x + 2 y = - 1 \quad \text { nilai } ( 4 x + 5 y ) } \\ { - 2 x + y = - 4 } \end{array} \right.
Solve for x, y
x=\frac{4\left(2-5aln\right)}{7\left(1-2aln\right)}
y=-\frac{4\left(3-4aln\right)}{7\left(1-2aln\right)}
a=0\text{ or }l=0\text{ or }n\neq \frac{1}{2al}
Share
Copied to clipboard
3x+2y=-inlai\left(4x+5y\right)
Consider the first equation. Multiply -1 and i to get -i.
3x+2y=nla\left(4x+5y\right)
Multiply -i and i to get 1.
3x+2y=4nlax+5nlay
Use the distributive property to multiply nla by 4x+5y.
3x+2y-4nlax=5nlay
Subtract 4nlax from both sides.
3x+2y-4nlax-5nlay=0
Subtract 5nlay from both sides.
\left(3-4nla\right)x+\left(2-5nla\right)y=0
Combine all terms containing x,y.
\left(3-4aln\right)x+\left(2-5aln\right)y=0,-2x+y=-4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\left(3-4aln\right)x+\left(2-5aln\right)y=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
\left(3-4aln\right)x=\left(5aln-2\right)y
Subtract \left(2-5lna\right)y from both sides of the equation.
x=\frac{1}{3-4aln}\left(5aln-2\right)y
Divide both sides by 3-4lna.
x=\frac{5aln-2}{3-4aln}y
Multiply \frac{1}{3-4lna} times \left(-2+5lna\right)y.
-2\times \frac{5aln-2}{3-4aln}y+y=-4
Substitute \frac{\left(-2+5lna\right)y}{3-4lna} for x in the other equation, -2x+y=-4.
\left(-\frac{2\left(5aln-2\right)}{3-4aln}\right)y+y=-4
Multiply -2 times \frac{\left(-2+5lna\right)y}{3-4lna}.
\frac{7\left(1-2aln\right)}{3-4aln}y=-4
Add -\frac{2\left(-2+5lna\right)y}{3-4lna} to y.
y=-\frac{4\left(3-4aln\right)}{7\left(1-2aln\right)}
Divide both sides by \frac{7\left(-2aln+1\right)}{3-4lna}.
x=\frac{5aln-2}{3-4aln}\left(-\frac{4\left(3-4aln\right)}{7\left(1-2aln\right)}\right)
Substitute -\frac{4\left(3-4lna\right)}{7\left(-2aln+1\right)} for y in x=\frac{5aln-2}{3-4aln}y. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{4\left(5aln-2\right)}{7\left(1-2aln\right)}
Multiply \frac{-2+5lna}{3-4lna} times -\frac{4\left(3-4lna\right)}{7\left(-2aln+1\right)}.
x=-\frac{4\left(5aln-2\right)}{7\left(1-2aln\right)},y=-\frac{4\left(3-4aln\right)}{7\left(1-2aln\right)}
The system is now solved.
3x+2y=-inlai\left(4x+5y\right)
Consider the first equation. Multiply -1 and i to get -i.
3x+2y=nla\left(4x+5y\right)
Multiply -i and i to get 1.
3x+2y=4nlax+5nlay
Use the distributive property to multiply nla by 4x+5y.
3x+2y-4nlax=5nlay
Subtract 4nlax from both sides.
3x+2y-4nlax-5nlay=0
Subtract 5nlay from both sides.
\left(3-4nla\right)x+\left(2-5nla\right)y=0
Combine all terms containing x,y.
\left(3-4aln\right)x+\left(2-5aln\right)y=0,-2x+y=-4
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3-4aln&2-5aln\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-4\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3-4aln&2-5aln\\-2&1\end{matrix}\right))\left(\begin{matrix}3-4aln&2-5aln\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3-4aln&2-5aln\\-2&1\end{matrix}\right))\left(\begin{matrix}0\\-4\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3-4lna&2-5lna\\-2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3-4aln&2-5aln\\-2&1\end{matrix}\right))\left(\begin{matrix}0\\-4\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3-4aln&2-5aln\\-2&1\end{matrix}\right))\left(\begin{matrix}0\\-4\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-4aln-\left(2-5aln\right)\left(-2\right)}&-\frac{2-5aln}{3-4aln-\left(2-5aln\right)\left(-2\right)}\\-\frac{-2}{3-4aln-\left(2-5aln\right)\left(-2\right)}&\frac{3-4aln}{3-4aln-\left(2-5aln\right)\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}0\\-4\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7\left(1-2aln\right)}&-\frac{2-5aln}{7\left(1-2aln\right)}\\\frac{2}{7\left(1-2aln\right)}&\frac{3-4aln}{7\left(1-2aln\right)}\end{matrix}\right)\left(\begin{matrix}0\\-4\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\left(-\frac{2-5aln}{7\left(1-2aln\right)}\right)\left(-4\right)\\\frac{3-4aln}{7\left(1-2aln\right)}\left(-4\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4\left(2-5aln\right)}{7\left(1-2aln\right)}\\-\frac{4\left(3-4aln\right)}{7\left(1-2aln\right)}\end{matrix}\right)
Do the arithmetic.
x=\frac{4\left(2-5aln\right)}{7\left(1-2aln\right)},y=-\frac{4\left(3-4aln\right)}{7\left(1-2aln\right)}
Extract the matrix elements x and y.
3x+2y=-inlai\left(4x+5y\right)
Consider the first equation. Multiply -1 and i to get -i.
3x+2y=nla\left(4x+5y\right)
Multiply -i and i to get 1.
3x+2y=4nlax+5nlay
Use the distributive property to multiply nla by 4x+5y.
3x+2y-4nlax=5nlay
Subtract 4nlax from both sides.
3x+2y-4nlax-5nlay=0
Subtract 5nlay from both sides.
\left(3-4nla\right)x+\left(2-5nla\right)y=0
Combine all terms containing x,y.
\left(3-4aln\right)x+\left(2-5aln\right)y=0,-2x+y=-4
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-2\left(3-4aln\right)x-2\left(2-5aln\right)y=0,\left(3-4aln\right)\left(-2\right)x+\left(3-4aln\right)y=\left(3-4aln\right)\left(-4\right)
To make \left(3-4lna\right)x and -2x equal, multiply all terms on each side of the first equation by -2 and all terms on each side of the second by 3-4lna.
\left(8aln-6\right)x+\left(10aln-4\right)y=0,\left(8aln-6\right)x+\left(3-4aln\right)y=16aln-12
Simplify.
\left(8aln-6\right)x+\left(6-8aln\right)x+\left(10aln-4\right)y+\left(4aln-3\right)y=12-16aln
Subtract \left(8aln-6\right)x+\left(3-4aln\right)y=16aln-12 from \left(8aln-6\right)x+\left(10aln-4\right)y=0 by subtracting like terms on each side of the equal sign.
\left(10aln-4\right)y+\left(4aln-3\right)y=12-16aln
Add -6x+8xlna to 6x-8xlna. Terms -6x+8xlna and 6x-8xlna cancel out, leaving an equation with only one variable that can be solved.
\left(14aln-7\right)y=12-16aln
Add -4y+10ylna to \left(-3+4lna\right)y.
y=\frac{4\left(3-4aln\right)}{7\left(2aln-1\right)}
Divide both sides by -7+14lna.
-2x+\frac{4\left(3-4aln\right)}{7\left(2aln-1\right)}=-4
Substitute \frac{4\left(3-4lna\right)}{7\left(2aln-1\right)} for y in -2x+y=-4. Because the resulting equation contains only one variable, you can solve for x directly.
-2x=\frac{8\left(2-5aln\right)}{7\left(2aln-1\right)}
Subtract \frac{4\left(3-4lna\right)}{7\left(2aln-1\right)} from both sides of the equation.
x=-\frac{4\left(2-5aln\right)}{7\left(2aln-1\right)}
Divide both sides by -2.
x=-\frac{4\left(2-5aln\right)}{7\left(2aln-1\right)},y=\frac{4\left(3-4aln\right)}{7\left(2aln-1\right)}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}