\left\{ \begin{array} { l } { 3 x + 2 y + 2 = 39 } \\ { 2 x + 3 y + 2 = 24 } \\ { x + 2 y + 3 z = 26 } \end{array} \right.
Solve for x, y, z
x = \frac{67}{5} = 13\frac{2}{5} = 13.4
y = -\frac{8}{5} = -1\frac{3}{5} = -1.6
z = \frac{79}{15} = 5\frac{4}{15} \approx 5.266666667
Share
Copied to clipboard
x+2y+3z=26 2x+3y+2=24 3x+2y+2=39
Reorder the equations.
x=-2y-3z+26
Solve x+2y+3z=26 for x.
2\left(-2y-3z+26\right)+3y+2=24 3\left(-2y-3z+26\right)+2y+2=39
Substitute -2y-3z+26 for x in the second and third equation.
y=-6z+30 z=\frac{41}{9}-\frac{4}{9}y
Solve these equations for y and z respectively.
z=\frac{41}{9}-\frac{4}{9}\left(-6z+30\right)
Substitute -6z+30 for y in the equation z=\frac{41}{9}-\frac{4}{9}y.
z=\frac{79}{15}
Solve z=\frac{41}{9}-\frac{4}{9}\left(-6z+30\right) for z.
y=-6\times \frac{79}{15}+30
Substitute \frac{79}{15} for z in the equation y=-6z+30.
y=-\frac{8}{5}
Calculate y from y=-6\times \frac{79}{15}+30.
x=-2\left(-\frac{8}{5}\right)-3\times \frac{79}{15}+26
Substitute -\frac{8}{5} for y and \frac{79}{15} for z in the equation x=-2y-3z+26.
x=\frac{67}{5}
Calculate x from x=-2\left(-\frac{8}{5}\right)-3\times \frac{79}{15}+26.
x=\frac{67}{5} y=-\frac{8}{5} z=\frac{79}{15}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}