\left\{ \begin{array} { l } { 3 x + 2 x = 17 } \\ { x - y = 4 } \end{array} \right.
Solve for x, y
x = \frac{17}{5} = 3\frac{2}{5} = 3.4
y=-\frac{3}{5}=-0.6
Graph
Share
Copied to clipboard
5x=17
Consider the first equation. Combine 3x and 2x to get 5x.
x=\frac{17}{5}
Divide both sides by 5.
\frac{17}{5}-y=4
Consider the second equation. Insert the known values of variables into the equation.
-y=4-\frac{17}{5}
Subtract \frac{17}{5} from both sides.
-y=\frac{3}{5}
Subtract \frac{17}{5} from 4 to get \frac{3}{5}.
y=\frac{\frac{3}{5}}{-1}
Divide both sides by -1.
y=\frac{3}{5\left(-1\right)}
Express \frac{\frac{3}{5}}{-1} as a single fraction.
y=\frac{3}{-5}
Multiply 5 and -1 to get -5.
y=-\frac{3}{5}
Fraction \frac{3}{-5} can be rewritten as -\frac{3}{5} by extracting the negative sign.
x=\frac{17}{5} y=-\frac{3}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}