\left\{ \begin{array} { l } { 3 x + 2 ( y - 3 ) = 2 y } \\ { 2 x - ( y + 2 x ) = 4 } \end{array} \right.
Solve for x, y
x=2
y=-4
Graph
Share
Copied to clipboard
3x+2y-6=2y
Consider the first equation. Use the distributive property to multiply 2 by y-3.
3x+2y-6-2y=0
Subtract 2y from both sides.
3x-6=0
Combine 2y and -2y to get 0.
3x=6
Add 6 to both sides. Anything plus zero gives itself.
x=\frac{6}{3}
Divide both sides by 3.
x=2
Divide 6 by 3 to get 2.
2\times 2-\left(y+2\times 2\right)=4
Consider the second equation. Insert the known values of variables into the equation.
4-\left(y+2\times 2\right)=4
Multiply 2 and 2 to get 4.
4-\left(y+4\right)=4
Multiply 2 and 2 to get 4.
4-y-4=4
To find the opposite of y+4, find the opposite of each term.
-y=4
Subtract 4 from 4 to get 0.
y=-4
Divide both sides by -1.
x=2 y=-4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}