\left\{ \begin{array} { l } { 3 a - 2 b = 2018 } \\ { 3 b - 2 a = - 201 } \end{array} \right.
Solve for a, b
a = \frac{5652}{5} = 1130\frac{2}{5} = 1130.4
b = \frac{3433}{5} = 686\frac{3}{5} = 686.6
Share
Copied to clipboard
3a-2b=2018,-2a+3b=-201
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3a-2b=2018
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
3a=2b+2018
Add 2b to both sides of the equation.
a=\frac{1}{3}\left(2b+2018\right)
Divide both sides by 3.
a=\frac{2}{3}b+\frac{2018}{3}
Multiply \frac{1}{3} times 2018+2b.
-2\left(\frac{2}{3}b+\frac{2018}{3}\right)+3b=-201
Substitute \frac{2018+2b}{3} for a in the other equation, -2a+3b=-201.
-\frac{4}{3}b-\frac{4036}{3}+3b=-201
Multiply -2 times \frac{2018+2b}{3}.
\frac{5}{3}b-\frac{4036}{3}=-201
Add -\frac{4b}{3} to 3b.
\frac{5}{3}b=\frac{3433}{3}
Add \frac{4036}{3} to both sides of the equation.
b=\frac{3433}{5}
Divide both sides of the equation by \frac{5}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{2}{3}\times \frac{3433}{5}+\frac{2018}{3}
Substitute \frac{3433}{5} for b in a=\frac{2}{3}b+\frac{2018}{3}. Because the resulting equation contains only one variable, you can solve for a directly.
a=\frac{6866}{15}+\frac{2018}{3}
Multiply \frac{2}{3} times \frac{3433}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
a=\frac{5652}{5}
Add \frac{2018}{3} to \frac{6866}{15} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
a=\frac{5652}{5},b=\frac{3433}{5}
The system is now solved.
3a-2b=2018,-2a+3b=-201
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&-2\\-2&3\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}2018\\-201\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&-2\\-2&3\end{matrix}\right))\left(\begin{matrix}3&-2\\-2&3\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\-2&3\end{matrix}\right))\left(\begin{matrix}2018\\-201\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&-2\\-2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\-2&3\end{matrix}\right))\left(\begin{matrix}2018\\-201\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\-2&3\end{matrix}\right))\left(\begin{matrix}2018\\-201\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-\left(-2\left(-2\right)\right)}&-\frac{-2}{3\times 3-\left(-2\left(-2\right)\right)}\\-\frac{-2}{3\times 3-\left(-2\left(-2\right)\right)}&\frac{3}{3\times 3-\left(-2\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}2018\\-201\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{2}{5}\\\frac{2}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}2018\\-201\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 2018+\frac{2}{5}\left(-201\right)\\\frac{2}{5}\times 2018+\frac{3}{5}\left(-201\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{5652}{5}\\\frac{3433}{5}\end{matrix}\right)
Do the arithmetic.
a=\frac{5652}{5},b=\frac{3433}{5}
Extract the matrix elements a and b.
3a-2b=2018,-2a+3b=-201
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-2\times 3a-2\left(-2\right)b=-2\times 2018,3\left(-2\right)a+3\times 3b=3\left(-201\right)
To make 3a and -2a equal, multiply all terms on each side of the first equation by -2 and all terms on each side of the second by 3.
-6a+4b=-4036,-6a+9b=-603
Simplify.
-6a+6a+4b-9b=-4036+603
Subtract -6a+9b=-603 from -6a+4b=-4036 by subtracting like terms on each side of the equal sign.
4b-9b=-4036+603
Add -6a to 6a. Terms -6a and 6a cancel out, leaving an equation with only one variable that can be solved.
-5b=-4036+603
Add 4b to -9b.
-5b=-3433
Add -4036 to 603.
b=\frac{3433}{5}
Divide both sides by -5.
-2a+3\times \frac{3433}{5}=-201
Substitute \frac{3433}{5} for b in -2a+3b=-201. Because the resulting equation contains only one variable, you can solve for a directly.
-2a+\frac{10299}{5}=-201
Multiply 3 times \frac{3433}{5}.
-2a=-\frac{11304}{5}
Subtract \frac{10299}{5} from both sides of the equation.
a=\frac{5652}{5}
Divide both sides by -2.
a=\frac{5652}{5},b=\frac{3433}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}