\left\{ \begin{array} { l } { 3 a + a = - a } \\ { \frac { 2 a + 7 } { b - a } = 5 } \end{array} \right.
Solve for a, b
a=0
b = \frac{7}{5} = 1\frac{2}{5} = 1.4
Share
Copied to clipboard
4a=-a
Consider the first equation. Combine 3a and a to get 4a.
4a+a=0
Add a to both sides.
5a=0
Combine 4a and a to get 5a.
a=0
Divide both sides by 5. Zero divided by any non-zero number gives zero.
\frac{2\times 0+7}{b-0}=5
Consider the second equation. Insert the known values of variables into the equation.
2\times 0+7=5b
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by b.
0+7=5b
Multiply 2 and 0 to get 0.
7=5b
Add 0 and 7 to get 7.
5b=7
Swap sides so that all variable terms are on the left hand side.
b=\frac{7}{5}
Divide both sides by 5.
a=0 b=\frac{7}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}