Skip to main content
Solve for a, d
Tick mark Image

Similar Problems from Web Search

Share

3a+3d=0,5a+10d=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3a+3d=0
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
3a=-3d
Subtract 3d from both sides of the equation.
a=\frac{1}{3}\left(-3\right)d
Divide both sides by 3.
a=-d
Multiply \frac{1}{3} times -3d.
5\left(-1\right)d+10d=0
Substitute -d for a in the other equation, 5a+10d=0.
-5d+10d=0
Multiply 5 times -d.
5d=0
Add -5d to 10d.
d=0
Divide both sides by 5.
a=0
Substitute 0 for d in a=-d. Because the resulting equation contains only one variable, you can solve for a directly.
a=0,d=0
The system is now solved.
3a+3d=0,5a+10d=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&3\\5&10\end{matrix}\right)\left(\begin{matrix}a\\d\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&3\\5&10\end{matrix}\right))\left(\begin{matrix}3&3\\5&10\end{matrix}\right)\left(\begin{matrix}a\\d\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\5&10\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&3\\5&10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\d\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\5&10\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\d\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\5&10\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\d\end{matrix}\right)=\left(\begin{matrix}\frac{10}{3\times 10-3\times 5}&-\frac{3}{3\times 10-3\times 5}\\-\frac{5}{3\times 10-3\times 5}&\frac{3}{3\times 10-3\times 5}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\d\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&-\frac{1}{5}\\-\frac{1}{3}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\d\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Multiply the matrices.
a=0,d=0
Extract the matrix elements a and d.
3a+3d=0,5a+10d=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5\times 3a+5\times 3d=0,3\times 5a+3\times 10d=0
To make 3a and 5a equal, multiply all terms on each side of the first equation by 5 and all terms on each side of the second by 3.
15a+15d=0,15a+30d=0
Simplify.
15a-15a+15d-30d=0
Subtract 15a+30d=0 from 15a+15d=0 by subtracting like terms on each side of the equal sign.
15d-30d=0
Add 15a to -15a. Terms 15a and -15a cancel out, leaving an equation with only one variable that can be solved.
-15d=0
Add 15d to -30d.
d=0
Divide both sides by -15.
5a=0
Substitute 0 for d in 5a+10d=0. Because the resulting equation contains only one variable, you can solve for a directly.
a=0
Divide both sides by 5.
a=0,d=0
The system is now solved.