\left\{ \begin{array} { l } { 3 a + 14 b = 4 } \\ { 13 a + 19 b = 13 } \end{array} \right.
Solve for a, b
a=\frac{106}{125}=0.848
b=\frac{13}{125}=0.104
Share
Copied to clipboard
3a+14b=4,13a+19b=13
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3a+14b=4
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
3a=-14b+4
Subtract 14b from both sides of the equation.
a=\frac{1}{3}\left(-14b+4\right)
Divide both sides by 3.
a=-\frac{14}{3}b+\frac{4}{3}
Multiply \frac{1}{3} times -14b+4.
13\left(-\frac{14}{3}b+\frac{4}{3}\right)+19b=13
Substitute \frac{-14b+4}{3} for a in the other equation, 13a+19b=13.
-\frac{182}{3}b+\frac{52}{3}+19b=13
Multiply 13 times \frac{-14b+4}{3}.
-\frac{125}{3}b+\frac{52}{3}=13
Add -\frac{182b}{3} to 19b.
-\frac{125}{3}b=-\frac{13}{3}
Subtract \frac{52}{3} from both sides of the equation.
b=\frac{13}{125}
Divide both sides of the equation by -\frac{125}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=-\frac{14}{3}\times \frac{13}{125}+\frac{4}{3}
Substitute \frac{13}{125} for b in a=-\frac{14}{3}b+\frac{4}{3}. Because the resulting equation contains only one variable, you can solve for a directly.
a=-\frac{182}{375}+\frac{4}{3}
Multiply -\frac{14}{3} times \frac{13}{125} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
a=\frac{106}{125}
Add \frac{4}{3} to -\frac{182}{375} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
a=\frac{106}{125},b=\frac{13}{125}
The system is now solved.
3a+14b=4,13a+19b=13
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&14\\13&19\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}4\\13\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&14\\13&19\end{matrix}\right))\left(\begin{matrix}3&14\\13&19\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&14\\13&19\end{matrix}\right))\left(\begin{matrix}4\\13\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&14\\13&19\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&14\\13&19\end{matrix}\right))\left(\begin{matrix}4\\13\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&14\\13&19\end{matrix}\right))\left(\begin{matrix}4\\13\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{19}{3\times 19-14\times 13}&-\frac{14}{3\times 19-14\times 13}\\-\frac{13}{3\times 19-14\times 13}&\frac{3}{3\times 19-14\times 13}\end{matrix}\right)\left(\begin{matrix}4\\13\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{19}{125}&\frac{14}{125}\\\frac{13}{125}&-\frac{3}{125}\end{matrix}\right)\left(\begin{matrix}4\\13\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{19}{125}\times 4+\frac{14}{125}\times 13\\\frac{13}{125}\times 4-\frac{3}{125}\times 13\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{106}{125}\\\frac{13}{125}\end{matrix}\right)
Do the arithmetic.
a=\frac{106}{125},b=\frac{13}{125}
Extract the matrix elements a and b.
3a+14b=4,13a+19b=13
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
13\times 3a+13\times 14b=13\times 4,3\times 13a+3\times 19b=3\times 13
To make 3a and 13a equal, multiply all terms on each side of the first equation by 13 and all terms on each side of the second by 3.
39a+182b=52,39a+57b=39
Simplify.
39a-39a+182b-57b=52-39
Subtract 39a+57b=39 from 39a+182b=52 by subtracting like terms on each side of the equal sign.
182b-57b=52-39
Add 39a to -39a. Terms 39a and -39a cancel out, leaving an equation with only one variable that can be solved.
125b=52-39
Add 182b to -57b.
125b=13
Add 52 to -39.
b=\frac{13}{125}
Divide both sides by 125.
13a+19\times \frac{13}{125}=13
Substitute \frac{13}{125} for b in 13a+19b=13. Because the resulting equation contains only one variable, you can solve for a directly.
13a+\frac{247}{125}=13
Multiply 19 times \frac{13}{125}.
13a=\frac{1378}{125}
Subtract \frac{247}{125} from both sides of the equation.
a=\frac{106}{125}
Divide both sides by 13.
a=\frac{106}{125},b=\frac{13}{125}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}