\left\{ \begin{array} { l } { 3 ( y - 3 - 1 ) = x } \\ { 2 \cdot 5 ( 4 + 77 - 1 ) = x } \end{array} \right.
Solve for y, x
x=800
y = \frac{812}{3} = 270\frac{2}{3} \approx 270.666666667
Graph
Share
Copied to clipboard
10\left(4+77-1\right)=x
Consider the second equation. Multiply 2 and 5 to get 10.
10\left(81-1\right)=x
Add 4 and 77 to get 81.
10\times 80=x
Subtract 1 from 81 to get 80.
800=x
Multiply 10 and 80 to get 800.
x=800
Swap sides so that all variable terms are on the left hand side.
3\left(y-3-1\right)=800
Consider the first equation. Insert the known values of variables into the equation.
y-3-1=\frac{800}{3}
Divide both sides by 3.
y-4=\frac{800}{3}
Subtract 1 from -3 to get -4.
y=\frac{800}{3}+4
Add 4 to both sides.
y=\frac{812}{3}
Add \frac{800}{3} and 4 to get \frac{812}{3}.
y=\frac{812}{3} x=800
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}