\left\{ \begin{array} { l } { 3 ( y - \frac { 2 } { 3 } ) - 4 ( x + 5 ) = 14 } \\ { 7 ( y - \frac { 2 } { 3 } ) + 2 ( x + 5 ) = 10 } \end{array} \right.
Solve for y, x
x=-7
y = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
Graph
Share
Copied to clipboard
3\left(y-\frac{2}{3}\right)-4\left(x+5\right)=14,7\left(y-\frac{2}{3}\right)+2\left(x+5\right)=10
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3\left(y-\frac{2}{3}\right)-4\left(x+5\right)=14
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
3y-2-4\left(x+5\right)=14
Multiply 3 times y-\frac{2}{3}.
3y-2-4x-20=14
Multiply -4 times x+5.
3y-4x-22=14
Add -2 to -20.
3y-4x=36
Add 22 to both sides of the equation.
3y=4x+36
Add 4x to both sides of the equation.
y=\frac{1}{3}\left(4x+36\right)
Divide both sides by 3.
y=\frac{4}{3}x+12
Multiply \frac{1}{3} times 36+4x.
7\left(\frac{4}{3}x+12-\frac{2}{3}\right)+2\left(x+5\right)=10
Substitute \frac{4x}{3}+12 for y in the other equation, 7\left(y-\frac{2}{3}\right)+2\left(x+5\right)=10.
7\left(\frac{4}{3}x+\frac{34}{3}\right)+2\left(x+5\right)=10
Add 12 to -\frac{2}{3}.
\frac{28}{3}x+\frac{238}{3}+2\left(x+5\right)=10
Multiply 7 times \frac{4x+34}{3}.
\frac{28}{3}x+\frac{238}{3}+2x+10=10
Multiply 2 times x+5.
\frac{34}{3}x+\frac{238}{3}+10=10
Add \frac{28x}{3} to 2x.
\frac{34}{3}x+\frac{268}{3}=10
Add \frac{238}{3} to 10.
\frac{34}{3}x=-\frac{238}{3}
Subtract \frac{268}{3} from both sides of the equation.
x=-7
Divide both sides of the equation by \frac{34}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{4}{3}\left(-7\right)+12
Substitute -7 for x in y=\frac{4}{3}x+12. Because the resulting equation contains only one variable, you can solve for y directly.
y=-\frac{28}{3}+12
Multiply \frac{4}{3} times -7.
y=\frac{8}{3}
Add 12 to -\frac{28}{3}.
y=\frac{8}{3},x=-7
The system is now solved.
3\left(y-\frac{2}{3}\right)-4\left(x+5\right)=14,7\left(y-\frac{2}{3}\right)+2\left(x+5\right)=10
Put the equations in standard form and then use matrices to solve the system of equations.
3\left(y-\frac{2}{3}\right)-4\left(x+5\right)=14
Simplify the first equation to put it in standard form.
3y-2-4\left(x+5\right)=14
Multiply 3 times y-\frac{2}{3}.
3y-2-4x-20=14
Multiply -4 times x+5.
3y-4x-22=14
Add -2 to -20.
3y-4x=36
Add 22 to both sides of the equation.
7\left(y-\frac{2}{3}\right)+2\left(x+5\right)=10
Simplify the second equation to put it in standard form.
7y-\frac{14}{3}+2\left(x+5\right)=10
Multiply 7 times y-\frac{2}{3}.
7y-\frac{14}{3}+2x+10=10
Multiply 2 times x+5.
7y+2x+\frac{16}{3}=10
Add -\frac{14}{3} to 10.
7y+2x=\frac{14}{3}
Subtract \frac{16}{3} from both sides of the equation.
\left(\begin{matrix}3&-4\\7&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}36\\\frac{14}{3}\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&-4\\7&2\end{matrix}\right))\left(\begin{matrix}3&-4\\7&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\7&2\end{matrix}\right))\left(\begin{matrix}36\\\frac{14}{3}\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&-4\\7&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\7&2\end{matrix}\right))\left(\begin{matrix}36\\\frac{14}{3}\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\7&2\end{matrix}\right))\left(\begin{matrix}36\\\frac{14}{3}\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-4\times 7\right)}&-\frac{-4}{3\times 2-\left(-4\times 7\right)}\\-\frac{7}{3\times 2-\left(-4\times 7\right)}&\frac{3}{3\times 2-\left(-4\times 7\right)}\end{matrix}\right)\left(\begin{matrix}36\\\frac{14}{3}\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}&\frac{2}{17}\\-\frac{7}{34}&\frac{3}{34}\end{matrix}\right)\left(\begin{matrix}36\\\frac{14}{3}\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}\times 36+\frac{2}{17}\times \frac{14}{3}\\-\frac{7}{34}\times 36+\frac{3}{34}\times \frac{14}{3}\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}\\-7\end{matrix}\right)
Do the arithmetic.
y=\frac{8}{3},x=-7
Extract the matrix elements y and x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}