\left\{ \begin{array} { l } { 3 ( x - 10 ) = 2 x - 10 } \\ { 3 ( y - 10 ) = 2 y - 10 \frac { x } { 2 } } \end{array} \right.
Solve for x, y
x=20
y=-70
Graph
Share
Copied to clipboard
3x-30=2x-10
Consider the first equation. Use the distributive property to multiply 3 by x-10.
3x-30-2x=-10
Subtract 2x from both sides.
x-30=-10
Combine 3x and -2x to get x.
x=-10+30
Add 30 to both sides.
x=20
Add -10 and 30 to get 20.
3\left(y-10\right)=2y-10\times \frac{20}{2}
Consider the second equation. Insert the known values of variables into the equation.
3y-30=2y-10\times \frac{20}{2}
Use the distributive property to multiply 3 by y-10.
3y-30=2y-10\times 10
Divide 20 by 2 to get 10.
3y-30=2y-100
Multiply 10 and 10 to get 100.
3y-30-2y=-100
Subtract 2y from both sides.
y-30=-100
Combine 3y and -2y to get y.
y=-100+30
Add 30 to both sides.
y=-70
Add -100 and 30 to get -70.
x=20 y=-70
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}