\left\{ \begin{array} { l } { 3 ( x + y ) - 5 ( x - y ) = 16 } \\ { 7 ( y + 4 ) + ( y - y ) = 15 } \end{array} \right.
Solve for x, y
x = -\frac{108}{7} = -15\frac{3}{7} \approx -15.428571429
y = -\frac{13}{7} = -1\frac{6}{7} \approx -1.857142857
Graph
Share
Copied to clipboard
7y+28+y-y=15
Consider the second equation. Use the distributive property to multiply 7 by y+4.
8y+28-y=15
Combine 7y and y to get 8y.
7y+28=15
Combine 8y and -y to get 7y.
7y=15-28
Subtract 28 from both sides.
7y=-13
Subtract 28 from 15 to get -13.
y=-\frac{13}{7}
Divide both sides by 7.
3\left(x-\frac{13}{7}\right)-5\left(x-\left(-\frac{13}{7}\right)\right)=16
Consider the first equation. Insert the known values of variables into the equation.
3x-\frac{39}{7}-5\left(x-\left(-\frac{13}{7}\right)\right)=16
Use the distributive property to multiply 3 by x-\frac{13}{7}.
3x-\frac{39}{7}-5\left(x+\frac{13}{7}\right)=16
Multiply -1 and -\frac{13}{7} to get \frac{13}{7}.
3x-\frac{39}{7}-5x-\frac{65}{7}=16
Use the distributive property to multiply -5 by x+\frac{13}{7}.
-2x-\frac{39}{7}-\frac{65}{7}=16
Combine 3x and -5x to get -2x.
-2x-\frac{104}{7}=16
Subtract \frac{65}{7} from -\frac{39}{7} to get -\frac{104}{7}.
-2x=16+\frac{104}{7}
Add \frac{104}{7} to both sides.
-2x=\frac{216}{7}
Add 16 and \frac{104}{7} to get \frac{216}{7}.
x=\frac{\frac{216}{7}}{-2}
Divide both sides by -2.
x=\frac{216}{7\left(-2\right)}
Express \frac{\frac{216}{7}}{-2} as a single fraction.
x=\frac{216}{-14}
Multiply 7 and -2 to get -14.
x=-\frac{108}{7}
Reduce the fraction \frac{216}{-14} to lowest terms by extracting and canceling out 2.
x=-\frac{108}{7} y=-\frac{13}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}