\left\{ \begin{array} { l } { 3 ( x + y ) - 2 ( x - y ) = 44 } \\ { \frac { x + y } { 4 } - \frac { x - y } { 5 } = 3 } \end{array} \right.
Solve for x, y
x=24
y=4
Graph
Share
Copied to clipboard
3x+3y-2\left(x-y\right)=44
Consider the first equation. Use the distributive property to multiply 3 by x+y.
3x+3y-2x+2y=44
Use the distributive property to multiply -2 by x-y.
x+3y+2y=44
Combine 3x and -2x to get x.
x+5y=44
Combine 3y and 2y to get 5y.
5\left(x+y\right)-4\left(x-y\right)=60
Consider the second equation. Multiply both sides of the equation by 20, the least common multiple of 4,5.
5x+5y-4\left(x-y\right)=60
Use the distributive property to multiply 5 by x+y.
5x+5y-4x+4y=60
Use the distributive property to multiply -4 by x-y.
x+5y+4y=60
Combine 5x and -4x to get x.
x+9y=60
Combine 5y and 4y to get 9y.
x+5y=44,x+9y=60
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+5y=44
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-5y+44
Subtract 5y from both sides of the equation.
-5y+44+9y=60
Substitute -5y+44 for x in the other equation, x+9y=60.
4y+44=60
Add -5y to 9y.
4y=16
Subtract 44 from both sides of the equation.
y=4
Divide both sides by 4.
x=-5\times 4+44
Substitute 4 for y in x=-5y+44. Because the resulting equation contains only one variable, you can solve for x directly.
x=-20+44
Multiply -5 times 4.
x=24
Add 44 to -20.
x=24,y=4
The system is now solved.
3x+3y-2\left(x-y\right)=44
Consider the first equation. Use the distributive property to multiply 3 by x+y.
3x+3y-2x+2y=44
Use the distributive property to multiply -2 by x-y.
x+3y+2y=44
Combine 3x and -2x to get x.
x+5y=44
Combine 3y and 2y to get 5y.
5\left(x+y\right)-4\left(x-y\right)=60
Consider the second equation. Multiply both sides of the equation by 20, the least common multiple of 4,5.
5x+5y-4\left(x-y\right)=60
Use the distributive property to multiply 5 by x+y.
5x+5y-4x+4y=60
Use the distributive property to multiply -4 by x-y.
x+5y+4y=60
Combine 5x and -4x to get x.
x+9y=60
Combine 5y and 4y to get 9y.
x+5y=44,x+9y=60
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&5\\1&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}44\\60\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&5\\1&9\end{matrix}\right))\left(\begin{matrix}1&5\\1&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\1&9\end{matrix}\right))\left(\begin{matrix}44\\60\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&5\\1&9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\1&9\end{matrix}\right))\left(\begin{matrix}44\\60\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\1&9\end{matrix}\right))\left(\begin{matrix}44\\60\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{9-5}&-\frac{5}{9-5}\\-\frac{1}{9-5}&\frac{1}{9-5}\end{matrix}\right)\left(\begin{matrix}44\\60\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{4}&-\frac{5}{4}\\-\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}44\\60\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{4}\times 44-\frac{5}{4}\times 60\\-\frac{1}{4}\times 44+\frac{1}{4}\times 60\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\4\end{matrix}\right)
Do the arithmetic.
x=24,y=4
Extract the matrix elements x and y.
3x+3y-2\left(x-y\right)=44
Consider the first equation. Use the distributive property to multiply 3 by x+y.
3x+3y-2x+2y=44
Use the distributive property to multiply -2 by x-y.
x+3y+2y=44
Combine 3x and -2x to get x.
x+5y=44
Combine 3y and 2y to get 5y.
5\left(x+y\right)-4\left(x-y\right)=60
Consider the second equation. Multiply both sides of the equation by 20, the least common multiple of 4,5.
5x+5y-4\left(x-y\right)=60
Use the distributive property to multiply 5 by x+y.
5x+5y-4x+4y=60
Use the distributive property to multiply -4 by x-y.
x+5y+4y=60
Combine 5x and -4x to get x.
x+9y=60
Combine 5y and 4y to get 9y.
x+5y=44,x+9y=60
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x-x+5y-9y=44-60
Subtract x+9y=60 from x+5y=44 by subtracting like terms on each side of the equal sign.
5y-9y=44-60
Add x to -x. Terms x and -x cancel out, leaving an equation with only one variable that can be solved.
-4y=44-60
Add 5y to -9y.
-4y=-16
Add 44 to -60.
y=4
Divide both sides by -4.
x+9\times 4=60
Substitute 4 for y in x+9y=60. Because the resulting equation contains only one variable, you can solve for x directly.
x+36=60
Multiply 9 times 4.
x=24
Subtract 36 from both sides of the equation.
x=24,y=4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}