\left\{ \begin{array} { l } { 3 ( 4 - y ) + 2 = y - 6 } \\ { 2 ( x - y ) + 5 x - 4 = 0 } \end{array} \right.
Solve for y, x
x=2
y=5
Graph
Share
Copied to clipboard
12-3y+2=y-6
Consider the first equation. Use the distributive property to multiply 3 by 4-y.
14-3y=y-6
Add 12 and 2 to get 14.
14-3y-y=-6
Subtract y from both sides.
14-4y=-6
Combine -3y and -y to get -4y.
-4y=-6-14
Subtract 14 from both sides.
-4y=-20
Subtract 14 from -6 to get -20.
y=\frac{-20}{-4}
Divide both sides by -4.
y=5
Divide -20 by -4 to get 5.
2\left(x-5\right)+5x-4=0
Consider the second equation. Insert the known values of variables into the equation.
2x-10+5x-4=0
Use the distributive property to multiply 2 by x-5.
7x-10-4=0
Combine 2x and 5x to get 7x.
7x-14=0
Subtract 4 from -10 to get -14.
7x=14
Add 14 to both sides. Anything plus zero gives itself.
x=\frac{14}{7}
Divide both sides by 7.
x=2
Divide 14 by 7 to get 2.
y=5 x=2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}