\left\{ \begin{array} { l } { 3 ( 2 x - y ) = x - y } \\ { x + 5 y = 4 ( x + y ) - 1 } \end{array} \right.
Solve for x, y
x=2
y=5
Graph
Share
Copied to clipboard
6x-3y=x-y
Consider the first equation. Use the distributive property to multiply 3 by 2x-y.
6x-3y-x=-y
Subtract x from both sides.
5x-3y=-y
Combine 6x and -x to get 5x.
5x-3y+y=0
Add y to both sides.
5x-2y=0
Combine -3y and y to get -2y.
x+5y=4x+4y-1
Consider the second equation. Use the distributive property to multiply 4 by x+y.
x+5y-4x=4y-1
Subtract 4x from both sides.
-3x+5y=4y-1
Combine x and -4x to get -3x.
-3x+5y-4y=-1
Subtract 4y from both sides.
-3x+y=-1
Combine 5y and -4y to get y.
5x-2y=0,-3x+y=-1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x-2y=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x=2y
Add 2y to both sides of the equation.
x=\frac{1}{5}\times 2y
Divide both sides by 5.
x=\frac{2}{5}y
Multiply \frac{1}{5} times 2y.
-3\times \frac{2}{5}y+y=-1
Substitute \frac{2y}{5} for x in the other equation, -3x+y=-1.
-\frac{6}{5}y+y=-1
Multiply -3 times \frac{2y}{5}.
-\frac{1}{5}y=-1
Add -\frac{6y}{5} to y.
y=5
Multiply both sides by -5.
x=\frac{2}{5}\times 5
Substitute 5 for y in x=\frac{2}{5}y. Because the resulting equation contains only one variable, you can solve for x directly.
x=2
Multiply \frac{2}{5} times 5.
x=2,y=5
The system is now solved.
6x-3y=x-y
Consider the first equation. Use the distributive property to multiply 3 by 2x-y.
6x-3y-x=-y
Subtract x from both sides.
5x-3y=-y
Combine 6x and -x to get 5x.
5x-3y+y=0
Add y to both sides.
5x-2y=0
Combine -3y and y to get -2y.
x+5y=4x+4y-1
Consider the second equation. Use the distributive property to multiply 4 by x+y.
x+5y-4x=4y-1
Subtract 4x from both sides.
-3x+5y=4y-1
Combine x and -4x to get -3x.
-3x+5y-4y=-1
Subtract 4y from both sides.
-3x+y=-1
Combine 5y and -4y to get y.
5x-2y=0,-3x+y=-1
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&-2\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-1\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&-2\\-3&1\end{matrix}\right))\left(\begin{matrix}5&-2\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\-3&1\end{matrix}\right))\left(\begin{matrix}0\\-1\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&-2\\-3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\-3&1\end{matrix}\right))\left(\begin{matrix}0\\-1\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\-3&1\end{matrix}\right))\left(\begin{matrix}0\\-1\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5-\left(-2\left(-3\right)\right)}&-\frac{-2}{5-\left(-2\left(-3\right)\right)}\\-\frac{-3}{5-\left(-2\left(-3\right)\right)}&\frac{5}{5-\left(-2\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\-1\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-2\\-3&-5\end{matrix}\right)\left(\begin{matrix}0\\-1\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\left(-1\right)\\-5\left(-1\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\5\end{matrix}\right)
Do the arithmetic.
x=2,y=5
Extract the matrix elements x and y.
6x-3y=x-y
Consider the first equation. Use the distributive property to multiply 3 by 2x-y.
6x-3y-x=-y
Subtract x from both sides.
5x-3y=-y
Combine 6x and -x to get 5x.
5x-3y+y=0
Add y to both sides.
5x-2y=0
Combine -3y and y to get -2y.
x+5y=4x+4y-1
Consider the second equation. Use the distributive property to multiply 4 by x+y.
x+5y-4x=4y-1
Subtract 4x from both sides.
-3x+5y=4y-1
Combine x and -4x to get -3x.
-3x+5y-4y=-1
Subtract 4y from both sides.
-3x+y=-1
Combine 5y and -4y to get y.
5x-2y=0,-3x+y=-1
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-3\times 5x-3\left(-2\right)y=0,5\left(-3\right)x+5y=5\left(-1\right)
To make 5x and -3x equal, multiply all terms on each side of the first equation by -3 and all terms on each side of the second by 5.
-15x+6y=0,-15x+5y=-5
Simplify.
-15x+15x+6y-5y=5
Subtract -15x+5y=-5 from -15x+6y=0 by subtracting like terms on each side of the equal sign.
6y-5y=5
Add -15x to 15x. Terms -15x and 15x cancel out, leaving an equation with only one variable that can be solved.
y=5
Add 6y to -5y.
-3x+5=-1
Substitute 5 for y in -3x+y=-1. Because the resulting equation contains only one variable, you can solve for x directly.
-3x=-6
Subtract 5 from both sides of the equation.
x=2
Divide both sides by -3.
x=2,y=5
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}