\left\{ \begin{array} { l } { 3 ( 2 x + 1 ) - 5 ( y - 3 ) = 1 } \\ { 5 ( 1 - x ) - 4 ( 2 y + 1 ) = 3 } \end{array} \right.
Solve for x, y
x=-2
y=1
Graph
Share
Copied to clipboard
3\left(2x+1\right)-5\left(y-3\right)=1,5\left(-x+1\right)-4\left(2y+1\right)=3
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3\left(2x+1\right)-5\left(y-3\right)=1
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
6x+3-5\left(y-3\right)=1
Multiply 3 times 2x+1.
6x+3-5y+15=1
Multiply -5 times y-3.
6x-5y+18=1
Add 3 to 15.
6x-5y=-17
Subtract 18 from both sides of the equation.
6x=5y-17
Add 5y to both sides of the equation.
x=\frac{1}{6}\left(5y-17\right)
Divide both sides by 6.
x=\frac{5}{6}y-\frac{17}{6}
Multiply \frac{1}{6} times 5y-17.
5\left(-\left(\frac{5}{6}y-\frac{17}{6}\right)+1\right)-4\left(2y+1\right)=3
Substitute \frac{5y-17}{6} for x in the other equation, 5\left(-x+1\right)-4\left(2y+1\right)=3.
5\left(-\frac{5}{6}y+\frac{17}{6}+1\right)-4\left(2y+1\right)=3
Multiply -1 times \frac{5y-17}{6}.
5\left(-\frac{5}{6}y+\frac{23}{6}\right)-4\left(2y+1\right)=3
Add \frac{17}{6} to 1.
-\frac{25}{6}y+\frac{115}{6}-4\left(2y+1\right)=3
Multiply 5 times \frac{-5y+23}{6}.
-\frac{25}{6}y+\frac{115}{6}-8y-4=3
Multiply -4 times 2y+1.
-\frac{73}{6}y+\frac{115}{6}-4=3
Add -\frac{25y}{6} to -8y.
-\frac{73}{6}y+\frac{91}{6}=3
Add \frac{115}{6} to -4.
-\frac{73}{6}y=-\frac{73}{6}
Subtract \frac{91}{6} from both sides of the equation.
y=1
Divide both sides of the equation by -\frac{73}{6}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{5-17}{6}
Substitute 1 for y in x=\frac{5}{6}y-\frac{17}{6}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-2
Add -\frac{17}{6} to \frac{5}{6} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-2,y=1
The system is now solved.
3\left(2x+1\right)-5\left(y-3\right)=1,5\left(-x+1\right)-4\left(2y+1\right)=3
Put the equations in standard form and then use matrices to solve the system of equations.
3\left(2x+1\right)-5\left(y-3\right)=1
Simplify the first equation to put it in standard form.
6x+3-5\left(y-3\right)=1
Multiply 3 times 2x+1.
6x+3-5y+15=1
Multiply -5 times y-3.
6x-5y+18=1
Add 3 to 15.
6x-5y=-17
Subtract 18 from both sides of the equation.
5\left(-x+1\right)-4\left(2y+1\right)=3
Simplify the second equation to put it in standard form.
-5x+5-4\left(2y+1\right)=3
Multiply 5 times -x+1.
-5x+5-8y-4=3
Multiply -4 times 2y+1.
-5x-8y+1=3
Add 5 to -4.
-5x-8y=2
Subtract 1 from both sides of the equation.
\left(\begin{matrix}6&-5\\-5&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-17\\2\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}6&-5\\-5&-8\end{matrix}\right))\left(\begin{matrix}6&-5\\-5&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-5\\-5&-8\end{matrix}\right))\left(\begin{matrix}-17\\2\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}6&-5\\-5&-8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-5\\-5&-8\end{matrix}\right))\left(\begin{matrix}-17\\2\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-5\\-5&-8\end{matrix}\right))\left(\begin{matrix}-17\\2\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{6\left(-8\right)-\left(-5\left(-5\right)\right)}&-\frac{-5}{6\left(-8\right)-\left(-5\left(-5\right)\right)}\\-\frac{-5}{6\left(-8\right)-\left(-5\left(-5\right)\right)}&\frac{6}{6\left(-8\right)-\left(-5\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}-17\\2\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{73}&-\frac{5}{73}\\-\frac{5}{73}&-\frac{6}{73}\end{matrix}\right)\left(\begin{matrix}-17\\2\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{73}\left(-17\right)-\frac{5}{73}\times 2\\-\frac{5}{73}\left(-17\right)-\frac{6}{73}\times 2\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\1\end{matrix}\right)
Do the arithmetic.
x=-2,y=1
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}