\left\{ \begin{array} { l } { 3 \times 10 ^ { 7 } m = 0.06 } \\ { y = \frac { 1 } { 2 } \frac { 1.6 \times 10 ^ { - 19 } \times 200 } { 9 \times 10 ^ { - 31 } \times 0.02 } m } \end{array} \right.
Solve for m, y
y = \frac{16000000}{9} = 1777777\frac{7}{9} \approx 1777777.777777778
m=0.000000002
Share
Copied to clipboard
3\times 10000000m=0.06
Consider the first equation. Calculate 10 to the power of 7 and get 10000000.
y=\frac{1}{2}\times \frac{1.6\times \left(\frac{1}{10000000000000000000}\right)\times 200}{9\times 10^{-31}\times 0.02}m
Consider the second equation. Calculate 10 to the power of -19 and get \frac{1}{10000000000000000000}.
y=\frac{1}{2}\times \frac{1.6\times \left(\frac{1}{10000000000000000000}\right)\times 200}{9\times \left(\frac{1}{10000000000000000000000000000000}\right)\times 0.02}m
Calculate 10 to the power of -31 and get \frac{1}{10000000000000000000000000000000}.
y-\frac{1}{2}\times \frac{1.6\times \left(\frac{1}{10000000000000000000}\right)\times 200}{9\times \left(\frac{1}{10000000000000000000000000000000}\right)\times 0.02}m=0
Subtract \frac{1}{2}\times \frac{1.6\times \left(\frac{1}{10000000000000000000}\right)\times 200}{9\times \left(\frac{1}{10000000000000000000000000000000}\right)\times 0.02}m from both sides.
30000000m=0.06,-\frac{8000000000000000}{9}m+y=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
30000000m=0.06
Pick one of the two equations which is more simple to solve for m by isolating m on the left hand side of the equal sign.
m=0.000000002
Divide both sides by 30000000.
-\frac{8000000000000000}{9}\times 0.000000002+y=0
Substitute 0.000000002 for m in the other equation, -\frac{8000000000000000}{9}m+y=0.
-\frac{16000000}{9}+y=0
Multiply -\frac{8000000000000000}{9} times 0.000000002 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{16000000}{9}
Add \frac{16000000}{9} to both sides of the equation.
m=0.000000002,y=\frac{16000000}{9}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}