\left\{ \begin{array} { l } { 26 x + 30 y = 3800 } \\ { x + y = 130 } \end{array} \right.
Solve for x, y
x=25
y=105
Graph
Share
Copied to clipboard
26x+30y=3800,x+y=130
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
26x+30y=3800
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
26x=-30y+3800
Subtract 30y from both sides of the equation.
x=\frac{1}{26}\left(-30y+3800\right)
Divide both sides by 26.
x=-\frac{15}{13}y+\frac{1900}{13}
Multiply \frac{1}{26} times -30y+3800.
-\frac{15}{13}y+\frac{1900}{13}+y=130
Substitute \frac{-15y+1900}{13} for x in the other equation, x+y=130.
-\frac{2}{13}y+\frac{1900}{13}=130
Add -\frac{15y}{13} to y.
-\frac{2}{13}y=-\frac{210}{13}
Subtract \frac{1900}{13} from both sides of the equation.
y=105
Divide both sides of the equation by -\frac{2}{13}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{15}{13}\times 105+\frac{1900}{13}
Substitute 105 for y in x=-\frac{15}{13}y+\frac{1900}{13}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-1575+1900}{13}
Multiply -\frac{15}{13} times 105.
x=25
Add \frac{1900}{13} to -\frac{1575}{13} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=25,y=105
The system is now solved.
26x+30y=3800,x+y=130
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}26&30\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3800\\130\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}26&30\\1&1\end{matrix}\right))\left(\begin{matrix}26&30\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}26&30\\1&1\end{matrix}\right))\left(\begin{matrix}3800\\130\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}26&30\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}26&30\\1&1\end{matrix}\right))\left(\begin{matrix}3800\\130\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}26&30\\1&1\end{matrix}\right))\left(\begin{matrix}3800\\130\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{26-30}&-\frac{30}{26-30}\\-\frac{1}{26-30}&\frac{26}{26-30}\end{matrix}\right)\left(\begin{matrix}3800\\130\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{15}{2}\\\frac{1}{4}&-\frac{13}{2}\end{matrix}\right)\left(\begin{matrix}3800\\130\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 3800+\frac{15}{2}\times 130\\\frac{1}{4}\times 3800-\frac{13}{2}\times 130\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\105\end{matrix}\right)
Do the arithmetic.
x=25,y=105
Extract the matrix elements x and y.
26x+30y=3800,x+y=130
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
26x+30y=3800,26x+26y=26\times 130
To make 26x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 26.
26x+30y=3800,26x+26y=3380
Simplify.
26x-26x+30y-26y=3800-3380
Subtract 26x+26y=3380 from 26x+30y=3800 by subtracting like terms on each side of the equal sign.
30y-26y=3800-3380
Add 26x to -26x. Terms 26x and -26x cancel out, leaving an equation with only one variable that can be solved.
4y=3800-3380
Add 30y to -26y.
4y=420
Add 3800 to -3380.
y=105
Divide both sides by 4.
x+105=130
Substitute 105 for y in x+y=130. Because the resulting equation contains only one variable, you can solve for x directly.
x=25
Subtract 105 from both sides of the equation.
x=25,y=105
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}