Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

25x+35y=16500,x+y=500
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
25x+35y=16500
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
25x=-35y+16500
Subtract 35y from both sides of the equation.
x=\frac{1}{25}\left(-35y+16500\right)
Divide both sides by 25.
x=-\frac{7}{5}y+660
Multiply \frac{1}{25} times -35y+16500.
-\frac{7}{5}y+660+y=500
Substitute -\frac{7y}{5}+660 for x in the other equation, x+y=500.
-\frac{2}{5}y+660=500
Add -\frac{7y}{5} to y.
-\frac{2}{5}y=-160
Subtract 660 from both sides of the equation.
y=400
Divide both sides of the equation by -\frac{2}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{7}{5}\times 400+660
Substitute 400 for y in x=-\frac{7}{5}y+660. Because the resulting equation contains only one variable, you can solve for x directly.
x=-560+660
Multiply -\frac{7}{5} times 400.
x=100
Add 660 to -560.
x=100,y=400
The system is now solved.
25x+35y=16500,x+y=500
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}25&35\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16500\\500\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}25&35\\1&1\end{matrix}\right))\left(\begin{matrix}25&35\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}25&35\\1&1\end{matrix}\right))\left(\begin{matrix}16500\\500\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}25&35\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}25&35\\1&1\end{matrix}\right))\left(\begin{matrix}16500\\500\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}25&35\\1&1\end{matrix}\right))\left(\begin{matrix}16500\\500\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{25-35}&-\frac{35}{25-35}\\-\frac{1}{25-35}&\frac{25}{25-35}\end{matrix}\right)\left(\begin{matrix}16500\\500\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}&\frac{7}{2}\\\frac{1}{10}&-\frac{5}{2}\end{matrix}\right)\left(\begin{matrix}16500\\500\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}\times 16500+\frac{7}{2}\times 500\\\frac{1}{10}\times 16500-\frac{5}{2}\times 500\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\400\end{matrix}\right)
Do the arithmetic.
x=100,y=400
Extract the matrix elements x and y.
25x+35y=16500,x+y=500
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
25x+35y=16500,25x+25y=25\times 500
To make 25x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 25.
25x+35y=16500,25x+25y=12500
Simplify.
25x-25x+35y-25y=16500-12500
Subtract 25x+25y=12500 from 25x+35y=16500 by subtracting like terms on each side of the equal sign.
35y-25y=16500-12500
Add 25x to -25x. Terms 25x and -25x cancel out, leaving an equation with only one variable that can be solved.
10y=16500-12500
Add 35y to -25y.
10y=4000
Add 16500 to -12500.
y=400
Divide both sides by 10.
x+400=500
Substitute 400 for y in x+y=500. Because the resulting equation contains only one variable, you can solve for x directly.
x=100
Subtract 400 from both sides of the equation.
x=100,y=400
The system is now solved.