\left\{ \begin{array} { l } { 230 + 0.1 k = c } \\ { 150 + 0.22 k = 0 } \end{array} \right.
Solve for k, c
k = -\frac{7500}{11} = -681\frac{9}{11} \approx -681.818181818
c = \frac{1780}{11} = 161\frac{9}{11} \approx 161.818181818
Share
Copied to clipboard
0.22k=-150
Consider the second equation. Subtract 150 from both sides. Anything subtracted from zero gives its negation.
k=\frac{-150}{0.22}
Divide both sides by 0.22.
k=\frac{-15000}{22}
Expand \frac{-150}{0.22} by multiplying both numerator and the denominator by 100.
k=-\frac{7500}{11}
Reduce the fraction \frac{-15000}{22} to lowest terms by extracting and canceling out 2.
230+0.1\left(-\frac{7500}{11}\right)=c
Consider the first equation. Insert the known values of variables into the equation.
230-\frac{750}{11}=c
Multiply 0.1 and -\frac{7500}{11} to get -\frac{750}{11}.
\frac{1780}{11}=c
Subtract \frac{750}{11} from 230 to get \frac{1780}{11}.
c=\frac{1780}{11}
Swap sides so that all variable terms are on the left hand side.
k=-\frac{7500}{11} c=\frac{1780}{11}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}