\left\{ \begin{array} { l } { 202.65 x = 2 \times 8.314 y } \\ { 10 \times 4.65 = 2 \times 8.314 y } \end{array} \right.
Solve for x, y
x=\frac{310}{1351}\approx 0.22945966
y = \frac{11625}{4157} = 2\frac{3311}{4157} \approx 2.796487852
Graph
Share
Copied to clipboard
2\times 8.314y=10\times 4.65
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
202.65x-2\times 8.314y=0
Consider the first equation. Subtract 2\times 8.314y from both sides.
-y\left(2\times 8.314\right)+202.65x=0
Reorder the terms.
2\times 8.314y=10\times 4.65,\left(-2\times 8.314\right)y+202.65x=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2\times 8.314y=10\times 4.65
Pick one of the two equations which is more simple to solve for y by isolating y on the left hand side of the equal sign.
y=\frac{11625}{4157}
Divide both sides of the equation by 16.628, which is the same as multiplying both sides by the reciprocal of the fraction.
\left(-2\times 8.314\right)\times \frac{11625}{4157}+202.65x=0
Substitute \frac{11625}{4157} for y in the other equation, \left(-2\times 8.314\right)y+202.65x=0.
-46.5+202.65x=0
Multiply -2\times 8.314 times \frac{11625}{4157}.
202.65x=46.5
Add 46.5 to both sides of the equation.
x=\frac{310}{1351}
Divide both sides of the equation by 202.65, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{11625}{4157},x=\frac{310}{1351}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}