Skip to main content
Solve for a, b
Tick mark Image

Similar Problems from Web Search

Share

2016a-2011b=10,2011a-2016b=5
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2016a-2011b=10
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
2016a=2011b+10
Add 2011b to both sides of the equation.
a=\frac{1}{2016}\left(2011b+10\right)
Divide both sides by 2016.
a=\frac{2011}{2016}b+\frac{5}{1008}
Multiply \frac{1}{2016} times 2011b+10.
2011\left(\frac{2011}{2016}b+\frac{5}{1008}\right)-2016b=5
Substitute \frac{2011b}{2016}+\frac{5}{1008} for a in the other equation, 2011a-2016b=5.
\frac{4044121}{2016}b+\frac{10055}{1008}-2016b=5
Multiply 2011 times \frac{2011b}{2016}+\frac{5}{1008}.
-\frac{20135}{2016}b+\frac{10055}{1008}=5
Add \frac{4044121b}{2016} to -2016b.
-\frac{20135}{2016}b=-\frac{5015}{1008}
Subtract \frac{10055}{1008} from both sides of the equation.
b=\frac{2006}{4027}
Divide both sides of the equation by -\frac{20135}{2016}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{2011}{2016}\times \frac{2006}{4027}+\frac{5}{1008}
Substitute \frac{2006}{4027} for b in a=\frac{2011}{2016}b+\frac{5}{1008}. Because the resulting equation contains only one variable, you can solve for a directly.
a=\frac{2017033}{4059216}+\frac{5}{1008}
Multiply \frac{2011}{2016} times \frac{2006}{4027} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
a=\frac{2021}{4027}
Add \frac{5}{1008} to \frac{2017033}{4059216} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
a=\frac{2021}{4027},b=\frac{2006}{4027}
The system is now solved.
2016a-2011b=10,2011a-2016b=5
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2016&-2011\\2011&-2016\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}10\\5\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2016&-2011\\2011&-2016\end{matrix}\right))\left(\begin{matrix}2016&-2011\\2011&-2016\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2016&-2011\\2011&-2016\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2016&-2011\\2011&-2016\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2016&-2011\\2011&-2016\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2016&-2011\\2011&-2016\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{2016}{2016\left(-2016\right)-\left(-2011\times 2011\right)}&-\frac{-2011}{2016\left(-2016\right)-\left(-2011\times 2011\right)}\\-\frac{2011}{2016\left(-2016\right)-\left(-2011\times 2011\right)}&\frac{2016}{2016\left(-2016\right)-\left(-2011\times 2011\right)}\end{matrix}\right)\left(\begin{matrix}10\\5\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2016}{20135}&-\frac{2011}{20135}\\\frac{2011}{20135}&-\frac{2016}{20135}\end{matrix}\right)\left(\begin{matrix}10\\5\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2016}{20135}\times 10-\frac{2011}{20135}\times 5\\\frac{2011}{20135}\times 10-\frac{2016}{20135}\times 5\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2021}{4027}\\\frac{2006}{4027}\end{matrix}\right)
Do the arithmetic.
a=\frac{2021}{4027},b=\frac{2006}{4027}
Extract the matrix elements a and b.
2016a-2011b=10,2011a-2016b=5
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2011\times 2016a+2011\left(-2011\right)b=2011\times 10,2016\times 2011a+2016\left(-2016\right)b=2016\times 5
To make 2016a and 2011a equal, multiply all terms on each side of the first equation by 2011 and all terms on each side of the second by 2016.
4054176a-4044121b=20110,4054176a-4064256b=10080
Simplify.
4054176a-4054176a-4044121b+4064256b=20110-10080
Subtract 4054176a-4064256b=10080 from 4054176a-4044121b=20110 by subtracting like terms on each side of the equal sign.
-4044121b+4064256b=20110-10080
Add 4054176a to -4054176a. Terms 4054176a and -4054176a cancel out, leaving an equation with only one variable that can be solved.
20135b=20110-10080
Add -4044121b to 4064256b.
20135b=10030
Add 20110 to -10080.
b=\frac{2006}{4027}
Divide both sides by 20135.
2011a-2016\times \frac{2006}{4027}=5
Substitute \frac{2006}{4027} for b in 2011a-2016b=5. Because the resulting equation contains only one variable, you can solve for a directly.
2011a-\frac{4044096}{4027}=5
Multiply -2016 times \frac{2006}{4027}.
2011a=\frac{4064231}{4027}
Add \frac{4044096}{4027} to both sides of the equation.
a=\frac{2021}{4027}
Divide both sides by 2011.
a=\frac{2021}{4027},b=\frac{2006}{4027}
The system is now solved.