Skip to main content
Solve for k, b
Tick mark Image

Similar Problems from Web Search

Share

20k+b=200
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
30k+b=250
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
20k+b=200,30k+b=250
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
20k+b=200
Choose one of the equations and solve it for k by isolating k on the left hand side of the equal sign.
20k=-b+200
Subtract b from both sides of the equation.
k=\frac{1}{20}\left(-b+200\right)
Divide both sides by 20.
k=-\frac{1}{20}b+10
Multiply \frac{1}{20} times -b+200.
30\left(-\frac{1}{20}b+10\right)+b=250
Substitute -\frac{b}{20}+10 for k in the other equation, 30k+b=250.
-\frac{3}{2}b+300+b=250
Multiply 30 times -\frac{b}{20}+10.
-\frac{1}{2}b+300=250
Add -\frac{3b}{2} to b.
-\frac{1}{2}b=-50
Subtract 300 from both sides of the equation.
b=100
Multiply both sides by -2.
k=-\frac{1}{20}\times 100+10
Substitute 100 for b in k=-\frac{1}{20}b+10. Because the resulting equation contains only one variable, you can solve for k directly.
k=-5+10
Multiply -\frac{1}{20} times 100.
k=5
Add 10 to -5.
k=5,b=100
The system is now solved.
20k+b=200
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
30k+b=250
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
20k+b=200,30k+b=250
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}20&1\\30&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}200\\250\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}20&1\\30&1\end{matrix}\right))\left(\begin{matrix}20&1\\30&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}20&1\\30&1\end{matrix}\right))\left(\begin{matrix}200\\250\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}20&1\\30&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}20&1\\30&1\end{matrix}\right))\left(\begin{matrix}200\\250\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}20&1\\30&1\end{matrix}\right))\left(\begin{matrix}200\\250\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20-30}&-\frac{1}{20-30}\\-\frac{30}{20-30}&\frac{20}{20-30}\end{matrix}\right)\left(\begin{matrix}200\\250\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}&\frac{1}{10}\\3&-2\end{matrix}\right)\left(\begin{matrix}200\\250\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}\times 200+\frac{1}{10}\times 250\\3\times 200-2\times 250\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}5\\100\end{matrix}\right)
Do the arithmetic.
k=5,b=100
Extract the matrix elements k and b.
20k+b=200
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
30k+b=250
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
20k+b=200,30k+b=250
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
20k-30k+b-b=200-250
Subtract 30k+b=250 from 20k+b=200 by subtracting like terms on each side of the equal sign.
20k-30k=200-250
Add b to -b. Terms b and -b cancel out, leaving an equation with only one variable that can be solved.
-10k=200-250
Add 20k to -30k.
-10k=-50
Add 200 to -250.
k=5
Divide both sides by -10.
30\times 5+b=250
Substitute 5 for k in 30k+b=250. Because the resulting equation contains only one variable, you can solve for b directly.
150+b=250
Multiply 30 times 5.
b=100
Subtract 150 from both sides of the equation.
k=5,b=100
The system is now solved.