\left\{ \begin{array} { l } { 20 x + 50 y = 720 } \\ { 40 x + 30 y = 880 } \end{array} \right.
Solve for x, y
x=16
y=8
Graph
Share
Copied to clipboard
20x+50y=720,40x+30y=880
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
20x+50y=720
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
20x=-50y+720
Subtract 50y from both sides of the equation.
x=\frac{1}{20}\left(-50y+720\right)
Divide both sides by 20.
x=-\frac{5}{2}y+36
Multiply \frac{1}{20} times -50y+720.
40\left(-\frac{5}{2}y+36\right)+30y=880
Substitute -\frac{5y}{2}+36 for x in the other equation, 40x+30y=880.
-100y+1440+30y=880
Multiply 40 times -\frac{5y}{2}+36.
-70y+1440=880
Add -100y to 30y.
-70y=-560
Subtract 1440 from both sides of the equation.
y=8
Divide both sides by -70.
x=-\frac{5}{2}\times 8+36
Substitute 8 for y in x=-\frac{5}{2}y+36. Because the resulting equation contains only one variable, you can solve for x directly.
x=-20+36
Multiply -\frac{5}{2} times 8.
x=16
Add 36 to -20.
x=16,y=8
The system is now solved.
20x+50y=720,40x+30y=880
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}20&50\\40&30\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}720\\880\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}20&50\\40&30\end{matrix}\right))\left(\begin{matrix}20&50\\40&30\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}20&50\\40&30\end{matrix}\right))\left(\begin{matrix}720\\880\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}20&50\\40&30\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}20&50\\40&30\end{matrix}\right))\left(\begin{matrix}720\\880\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}20&50\\40&30\end{matrix}\right))\left(\begin{matrix}720\\880\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{30}{20\times 30-50\times 40}&-\frac{50}{20\times 30-50\times 40}\\-\frac{40}{20\times 30-50\times 40}&\frac{20}{20\times 30-50\times 40}\end{matrix}\right)\left(\begin{matrix}720\\880\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{140}&\frac{1}{28}\\\frac{1}{35}&-\frac{1}{70}\end{matrix}\right)\left(\begin{matrix}720\\880\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{140}\times 720+\frac{1}{28}\times 880\\\frac{1}{35}\times 720-\frac{1}{70}\times 880\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16\\8\end{matrix}\right)
Do the arithmetic.
x=16,y=8
Extract the matrix elements x and y.
20x+50y=720,40x+30y=880
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
40\times 20x+40\times 50y=40\times 720,20\times 40x+20\times 30y=20\times 880
To make 20x and 40x equal, multiply all terms on each side of the first equation by 40 and all terms on each side of the second by 20.
800x+2000y=28800,800x+600y=17600
Simplify.
800x-800x+2000y-600y=28800-17600
Subtract 800x+600y=17600 from 800x+2000y=28800 by subtracting like terms on each side of the equal sign.
2000y-600y=28800-17600
Add 800x to -800x. Terms 800x and -800x cancel out, leaving an equation with only one variable that can be solved.
1400y=28800-17600
Add 2000y to -600y.
1400y=11200
Add 28800 to -17600.
y=8
Divide both sides by 1400.
40x+30\times 8=880
Substitute 8 for y in 40x+30y=880. Because the resulting equation contains only one variable, you can solve for x directly.
40x+240=880
Multiply 30 times 8.
40x=640
Subtract 240 from both sides of the equation.
x=16
Divide both sides by 40.
x=16,y=8
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}